Spelling suggestions: "subject:"doptimisation dde trajectoires"" "subject:"doptimisation dee trajectoires""
1 |
Task compatibility and feasibility maximization for whole-body control / Compatibilité des tâches et maximisation de la faisabilité pour le contrôle de l'ensemble du corpsLober, Ryan 20 November 2017 (has links)
Le développement de comportements utiles pour les robots complexes, tel que des humanoïdes, s'avère difficile. La commande corps-complet à base de modèle allège en partie ces difficultés, en permettant la composition des comportements corps-complets complexes à partir de plusieurs tâches atomiques effectuées simultanément sur le robot. Cependant, des hypothèses et erreurs de modélisation, faites pendant la planification des tâches, peuvent produire des combinaisons infaisables/incompatibles quand exécutées sur le robot, créant des mouvements corps-complet imprévisibles, et probablement dangereux. L'objectif de ce travail est de mieux comprendre ce qui rend les tâches infaisables ou incompatibles et de développer des méthodes automatiques pour améliorer ces problèmes pour que les mouvements corps-complets puissent être accomplis comme prévu. Nous commençons par construire un formalisme permettant d'analyser quand les tâches sont faisables et compatibles étant données les contraintes de commande. En utilisant les métriques de faisabilité et compatibilité à base de modèle, nous démontrons comment optimiser les tâches avec des outils de commande prédictive non-linéaire ainsi que les inconvénients de cette approche. Afin de surmonter ces faiblesses, une boucle d'optimisation est formulée, qui améliore automatiquement la faisabilité et compatibilité des tâches via la recherche de politique sans modèle en conjonction avec la commande corps-complets à base de modèle. À travers une série d'expériences simulées et réelles, nous montrons que la simple optimisation de faisabilité et compatibilité des tâches nous permet de réaliser des mouvements corps-complets utiles. / Producing useful behaviors on complex robots, such as humanoids, is a challenging undertaking. Model-based whole-body control alleviates some of this difficulty by allowing complex whole-body motions to be broken up into multiple atomic tasks, which are performed simultaneously on the robot. However, modeling errors and assumptions, made during task planning, often result in infeasible and/or incompatible task combinations when executed on the robot. Consequently, there is no guarantee that the prescribed tasks will be accomplished, resulting in unpredictable, and most likely, unsafe whole-body motions. The objective of this work is to better understand what makes tasks infeasible or incompatible, and develop automatic methods of improving on these two issues so that the overall whole-body motions may be accomplished as planned. We start by building a concrete analytical formalism of what it means for tasks to be feasible with the control constraints and compatible with one another. Using the model-based feasibility and compatibility metrics, we demonstrate how the tasks can be optimized using non-linear model predictive control, while also detailing the shortcomings of this model-based approach. In order to overcome these weaknesses, an optimization loop is designed, which automatically improves task feasibility and compatibility using model-free policy search in conjunction with model-based whole-body control. Through a series of simulated and real-world experiments, we demonstrate that by simply optimizing the tasks to improve both feasibility and compatibility, complex and useful whole-body motions can be realized.
|
2 |
Planification de mouvements dynamiques appliquée à la conception de la liaison au solBoyer, Fabrice 13 November 2007 (has links) (PDF)
L'objectif de cette thèse est d'étendre l'utilisation des modèles de calcul de la dynamique du véhicule en proposant de nouvelles méthodologies inspirées du domaine de la planification de mouvements. Les modèles de dynamique du véhicule que nous considérons sont de nature industrielle : ils sont complexes, non linéaires et disponibles en règle générale sous forme de boîte noire uniquement. Ils sont utilisés traditionnellement avec des techniques de simulations qui partent d'une définition précise d'un état de départ et des sollicitations venant du conducteur. Les méthodes que nous proposons visent à prendre en compte une description plus "réelle" de la manoeuvre ou du test qu'effectue le véhicule : un certain domaine initial dont part le véhicule, un couloir à suivre sans sortir des limites, et un domaine d'arrivée. Outre la recherche d'une solution à ce problème de réalisation d'une certaine manoeuvre, on traite également les deux problèmes suivants : produire un échantillon représentatif de l'ensemble des manières de réaliser la man÷uvre ; trouver la valeur limite d'un paramètre (par exemple la vitesse initiale) au-delà de laquelle il n'y a plus de solution. Différentes techniques ont été mises en oeuvre avec succès, citons notamment : des méthodes exploratoires, un outil de contrôle optimal et un algorithme modifié de déformation de trajectoire. Ces outils génériques sont tous capables de s'adapter sans peine à toutes sortes de véhicules ou d'obstacles. Chacun présente cependant des avantages et des contraintes spécifiques. Ces méthodes ont été appliquées aux cas particuliers de manoeuvres standardisées de véhicules de tourisme. Les méthodes proposées permettent de déterminer de manière robuste et cohérente les limites physiques des véhicules sur ces tests.
|
3 |
Programmation robotique en utilisant la méthode de maillage et la simulation thermique du procédé de la projection thermique / Robot off-line programming with a mesh-based method and thermal simulation of the thermal spray processCai, Zhenhua 27 February 2014 (has links)
L’objectif de cette étude est d’améliorer l’extension du logiciel de programmation hors-ligne RobotStudio™ existante et de développer une nouvelle stratégie pour générer la trajectoire du robot par rapport aux paramètres essentiels de projection thermique. Notamment, l’historique de la température par rapport à la trajectoire générée est prise en compte dans cette étude.L’extension logicielle Thermal Spray Toolkit (TST) intégrée dans le cadre de RobotStudio™ est spécialement développée pour générer la trajectoire du robot en projection thermique. L’amélioration de l’extension TST dans la nouvelle version de RobotStudio™ est mise au point sur deux modules principaux :PathKit : génération de la trajectoire sur des pièces complexes.ProfileKit : modélisation du cordon singulier du dépôt et prédiction de son épaisseur en fonction des paramètres opératoires.Les déficiences existantes de l’extension TST impliquent de mettre en œuvre une méthode plus avancée qui permettra de générer la trajectoire du robot en utilisant le maillage pour le calcul d’élément finis. Ainsi, l’opération de projection thermique pourra être menée. Dans cette étude, la méthodologie de maillage est introduite afin de fournir une stratégie de choix de points de trajectoire et l’obtention d’orientations de ces points de trajectoire sur la surface à revêtir. Un module dit MeshKit est donc ajouté dans l’extension TST afin de lui apporter ces fonctionnalités nécessaires.Un couplage entre la trajectoire du robot et la répartition de chaleur du substrat a été développé, ce qui permet d’étudier l’évolution de température pendent le processus de projection thermique. / The objective of this study is to improve the add-in package of off-line programming software RobotStudio™ and to develop a new strategy for generating the robot trajectory according to the kinematic parameters of thermal spraying. The computed temperature evolution relative to the generated robot trajectory on the coating surface is also considered in this study.The add-in package Thermal Spray Toolkit (TST) integrated in RobotStudio™ is developed to generate the robot trajectory for thermal spraying. The improved TST for new version of RobotStudio™ is composed of two principle modules:PathKit: generation of robot trajectory on the free-form coating surface.ProfileKit: modeling the coating profile and prediction the coating thickness based on kinematic parameters.The existing deficiency of TST leads to the development of an advanced robot trajectory generation methodology. In this study, the new approach implements the robotic trajectory planning in an interactive manner between RobotStudio™ and the finite element analysis software (FES). It allows rearranging the imported node created on the surface of workpiece by FES and in turns generating the thermal spraying needed robot trajectories.A coupling between the robot trajectory and the heat distribution on the substrate has been developed, which allows analyzing the temperature evolution during the thermal spray process, it helps to minimize thermal variations on the substrate and to select the appropriate execution sequence of trajectory.
|
4 |
Programmation robotique en utilisant la méthode de maillage et la simulation thermique du procédé de la projection thermiqueCai, Zhenhua 27 February 2014 (has links) (PDF)
L'objectif de cette étude est d'améliorer l'extension du logiciel de programmation hors-ligne RobotStudio™ existante et de développer une nouvelle stratégie pour générer la trajectoire du robot par rapport aux paramètres essentiels de projection thermique. Notamment, l'historique de la température par rapport à la trajectoire générée est prise en compte dans cette étude.L'extension logicielle Thermal Spray Toolkit (TST) intégrée dans le cadre de RobotStudio™ est spécialement développée pour générer la trajectoire du robot en projection thermique. L'amélioration de l'extension TST dans la nouvelle version de RobotStudio™ est mise au point sur deux modules principaux :PathKit : génération de la trajectoire sur des pièces complexes.ProfileKit : modélisation du cordon singulier du dépôt et prédiction de son épaisseur en fonction des paramètres opératoires.Les déficiences existantes de l'extension TST impliquent de mettre en œuvre une méthode plus avancée qui permettra de générer la trajectoire du robot en utilisant le maillage pour le calcul d'élément finis. Ainsi, l'opération de projection thermique pourra être menée. Dans cette étude, la méthodologie de maillage est introduite afin de fournir une stratégie de choix de points de trajectoire et l'obtention d'orientations de ces points de trajectoire sur la surface à revêtir. Un module dit MeshKit est donc ajouté dans l'extension TST afin de lui apporter ces fonctionnalités nécessaires.Un couplage entre la trajectoire du robot et la répartition de chaleur du substrat a été développé, ce qui permet d'étudier l'évolution de température pendent le processus de projection thermique.
|
5 |
Planification de manœuvres à poussée forte vs à poussée faible pour le maintien à poste de satellites géostationnairesLosa, Damiana 09 February 2007 (has links) (PDF)
Les travaux de thèse traitent du problème de la planification de manœuvres pour le maintien à poste de satellites géostationnaires équipés de tuyères électriques (à poussée faible). Nous évaluons l'opportunité de substituer une telle planification à celle traditionnellement utilisée pour les satellites géostationnaires équipés de tuyères chimiques (à poussée forte). <br />Dès son apparition, la technologie des systèmes de propulsion à poussée faible a rencontré un vif intérêt auprès des agences et des sociétés spatiales. Grâce à sa haute impulsion spécifique (qui implique une basse consommation de carburant), cette technologie est devenue très compétitive par rapport à la technologie traditionnelle des propulseurs chimiques à poussée forte, surtout dans les phases de transfert et rendez-vous des missions spatiales. <br />Pendant la définition des missions à poussée faible, les analyses de faisabilité des phases de transfert et rendez-vous (via la solution de problèmes d'optimisation de trajectoire) ont été réalisées avec des solutions d'optimisation alternatives. En effet, pendant ces phases, il est nécessaire d'activer les systèmes de propulsion à faible poussée sur des longues portions du temps de transfert.<br />Par conséquent, les problèmes d'optimisation de trajectoire à poussée forte (typiquement formulés en temps discret) ont été remplacés par des problèmes d'optimisation de trajectoire à poussée faible formulés en temps continu et résolus par des techniques de contrôle en temps continu.<br />Le premier objectif de cette thèse est de comprendre quel est l'impact de la technologie à faible poussée lors de l'analyse de faisabilité de la phase de maintien à poste de satellites géostationnaires. Nous étudions en particulier l'impact de l'utilisation des systèmes de propulsion à faible poussée sur la planification de manœuvres et sur la boucle entière de maintien à poste géostationnaire.<br />L'étude consiste à déduire si la planification de manœuvres à poussée faible est compétitive au regard des stratégies classiques de planification couramment employées pour des manœuvres à poussée forte.<br />Généralement, les stratégies classiques à long terme pour le maintien à poste sont déduites de modèles de propagation d'orbite simplifiés (en fonctions des paramètres orbitaux moyennés) par la conjonction des trois facteurs suivants : la forte poussée des propulseurs, la dimension de la fenêtre de maintien à poste pas très contraignante ainsi que la possibilité d'exécuter des manœuvres à basse fréquence.<br />Dans le cadre de cette thèse, compte tenu du faible niveau des poussées et des contraintes strictes en position (fenêtres de maintien à poste petites), nous considérons comme plus appropriés l'hypothèse d'une plus haute fréquence de manœuvres et l'utilisation d'un modèle de propagation d'orbite en fonction de paramètres osculateurs.<br />Pour la planification de manœuvres, nous proposons une solution par approche directe : le problème de maintien à poste en tant que problème de contrôle optimal est discrétisé et traduit en un problème d'optimisation paramétrique. Deux techniques différentes d'optimisation sont proposées : l'optimisation sous contraintes à horizon fixe et celle à horizon glissant.<br />Cette deuxième technique est appliquée aux équations linéarisées du mouvement préalablement transformées via un changement de variable à la Lyapunov sur l'état des déviations des paramètres équinoxiaux osculateurs. Cette transformation de Lyapunov définit des nouveaux paramètres orbitaux. Elle rend le processus de planification plus compréhensible du point de vue du contrôle et plus facile à implémenter d'un point de vue numérique, grâce aux concepts de platitude et inclusion différentielles.<br />Les résultats de la planification de manœuvres à poussée faible sont obtenus dans un premier temps en fonction des changements de vitesse, dans un deuxième temps en fonction des forces engendrées par les tuyères des systèmes de propulsion classiques. Le but est de déterminer la solution la plus efficace en conditions nominales et en cas de panne d'un des propulseurs.<br />Le problème du positionnement simultané de plusieurs satellites dans une même grande fenêtre de maintien à poste n'est pas adressé explicitement. Il est implicitement résolu en proposant une technique fine de contrôle pour maintenir chaque satellite à poste dans une fenêtre de dimension très petite.
|
6 |
Planification de manoeuvres à poussée forte vs à poussée faible pour le maintien à poste de satellites géostationnairesLosa, Damiana 09 February 2007 (has links) (PDF)
Les travaux de thèse traitent du problème de la planification de manoeuvres pour le maintien à poste de satellites géostationnaires équipés de tuyères électriques (à poussée faible). Nous évaluons l'opportunité de substituer une telle planification à celle traditionnellement utilisée pour les satellites géostationnaires équipés de tuyères chimiques (à poussée forte). Dès son apparition, la technologie des systèmes de propulsion à poussée faible a rencontré un vif intérêt auprès des agences et des sociétés spatiales. Grâce à sa haute impulsion spécifique (qui implique une basse consommation de carburant), cette technologie est devenue très compétitive par rapport à la technologie traditionnelle des propulseurs chimiques à poussée forte, surtout dans les phases de transfert et rendez-vous des missions spatiales. Pendant la définition des missions à poussée faible, les analyses de faisabilité des phases de transfert et rendez-vous (via la solution de problèmes d'optimisation de trajectoire) ont été réalisées avec des solutions d'optimisation alternatives. En effet, pendant ces phases, il est nécessaire d'activer les systèmes de propulsion à faible poussée sur des longues portions du temps de transfert. Par conséquent, les problèmes d'optimisation de trajectoire à poussée forte (typiquement formulés en temps discret) ont été remplacés par des problèmes d'optimisation de trajectoire à poussée faible formulés en temps continu et résolus par des techniques de contrôle en temps continu. Le premier objectif de cette thèse est de comprendre quel est l'impact de la technologie à faible poussée lors de l'analyse de faisabilité de la phase de maintien à poste de satellites géostationnaires. Nous étudions en particulier l'impact de l'utilisation des systèmes de propulsion à faible poussée sur la planification de manoeuvres et sur la boucle entière de maintien à poste géostationnaire. L'étude consiste à déduire si la planification de manoeuvres à poussée faible est compétitive au regard des stratégies classiques de planification couramment employées pour des manoeuvres à poussée forte. Généralement, les stratégies classiques à long terme pour le maintien à poste sont déduites de modèles de propagation d'orbite simplifiés (en fonctions des paramètres orbitaux moyennés) par la conjonction des trois facteurs suivants : la forte poussée des propulseurs, la dimension de la fenêtre de maintien à poste pas très contraignante ainsi que la possibilité d'exécuter des manoeuvres à basse fréquence. Dans le cadre de cette thèse, compte tenu du faible niveau des poussées et des contraintes strictes en position (fenêtres de maintien à poste petites), nous considérons comme plus appropriés l'hypothèse d'une plus haute fréquence de manoeuvres et l'utilisation d'un modèle de propagation d'orbite en fonction de paramètres osculateurs. Pour la planification de manoeuvres, nous proposons une solution par approche directe : le problème de maintien à poste en tant que problème de contrôle optimal est discrétisé et traduit en un problème d'optimisation paramétrique. Deux techniques différentes d'optimisation sont proposées : l'optimisation sous contraintes à horizon fixe et celle à horizon glissant. Cette deuxième technique est appliquée aux équations linéarisées du mouvement préalablement transformées via un changement de variable à la Lyapunov sur l'état des déviations des paramètres équinoxiaux osculateurs. Cette transformation de Lyapunov définit des nouveaux paramètres orbitaux. Elle rend le processus de planification plus compréhensible du point de vue du contrôle et plus facile à implémenter d'un point de vue numérique, grâce aux concepts de platitude et inclusion différentielles. Les résultats de la planification de manoeuvres à poussée faible sont obtenus dans un premier temps en fonction des changements de vitesse, dans un deuxième temps en fonction des forces engendrées par les tuyères des systèmes de propulsion classiques. Le but est de déterminer la solution la plus efficace en conditions nominales et en cas de panne d'un des propulseurs. Le problème du positionnement simultané de plusieurs satellites dans une même grande fenêtre de maintien à poste n'est pas adressé explicitement. Il est implicitement résolu en proposant une technique fine de contrôle pour maintenir chaque satellite à poste dans une fenêtre de dimension très petite.
|
Page generated in 0.5116 seconds