• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Incertitude et flexibilité dans l'optimisation via simulation ; application aux systèmes de production / Uncertainty and flexibility in optimization via simulation; Application Production Systems

Baccouche, Ahlem 16 October 2012 (has links)
La simulation est de plus en plus utilisée dans les études de conception et d’organisation des systèmes complexes. Une étude par optimisation via simulation permet d’optimiser les paramètres d’un système afin d’obtenir les meilleures performances, estimés par la simulation. Toutefois, dans de nombreux systèmes complexes, certaines données sont incertaines (par exemple, les conditions opératoires du système ou le comportement des décideurs). En conséquence, même lorsque l’étude d’optimisation via simulation est réalisée avec le plus grand soin, les solutions obtenues peuvent se révéler inadaptées. Dans ce contexte, notre objectif est d’étudier comment optimiser, via simulation, un système afin qu’il continue d’être performant et robuste. L’étude bibliographique approfondie que nous avons menée montre que très peu de travaux en optimisation via simulation intègrent l’incertain et qu’ils peuvent être très limités dans leur capacité à fournir des solutions robustes en un temps de calcul raisonnable en particulier lorsque des métaheuristiques sont employées. Par ailleurs, la plupart des travaux existants délivrent une solution unique de conception performante du système et ne sont pas adaptés pour prendre en compte les aspects collaboratifs (groupe de décideurs). C’est pourquoi, nous avons proposé une approche originale connectant une recherche des solutions par optimisation évolutionniste multimodale et une évaluation des performances du système via simulation. Notre approche va permettre de fournir plusieurs alternatives performantes de conception d’un système et assez diversifiées pour acquérir aux décideurs une flexibilité dans le choix de la solution à implanter. De plus, nous avons exploité cette flexibilité pour intégrer, d’une part, les préférences individuelles des membres d’une équipe décisionnelle et, d’autre part, la présence de plusieurs environnements pour étudier la robustesse des solutions en un temps de traitement raisonnable par rapport à d’autres approches utilisant des méta heuristiques. Les approches proposées sont illustrées par l’optimisation d’une maille de supply chain. Grâce à cette application, nous avons montré qu’en plus de fournir un choix de solutions performantes pour dimensionner le système, nous pouvons proposer des solutions « collectivement acceptable » pour l’équipe décisionnelle et déterminer des solutions de conception robustes du système. Ces approches fournissent ainsi une flexibilité pour la phase de décision et contribuent à la prise en compte de l’incertitude dans l’optimisation via simulation d’un système. / Simulation is more and more used in studies of design and organization of complex systems. A simulation optimization study search for the system parameters that yield the best performance. However, in many complex systems, data can be uncertain (e.g., the operating conditions of the system or the behavior of decision makers). Therefore, even when the simulation optimization study is performed with the greatest care, the solutions may be inadequate. In this context, our goal is to study how to optimize, via simulation, a robust system. The extensive literature review we conducted shows that few simulation optimization approaches incorporate uncertainty and they can be very limited in their ability to provide robust solutions in a reasonable processing time, especially when metaheuristics are used. In addition, most existing approaches provide a single solution to the design problem and are not adapted to take into account the collaborative aspects (decision maker’s team). Therefore, we propose a novel approach connecting a search for solutions by evolutionary multimodal optimization and the evaluation of the system performance by simulation. Our approach allows to obtain a diverse set of designs that can be considered as efficient in terms of their performance and to provide decision-Makers with flexibility in the choice of the solution to implement. In addition, we use this flexibility to integrate first, the individual preferences of the members of decision maker’s team and secondly, the presence of multiple environments For studying the robustness of solutions in a reasonable processing time compared to other approaches based on metaheuristics. The proposed approaches are illustrated with an example of supply chain. With this application, we have shown that in addition to providing a choice of efficient solutions for sizing the system, we propose "collectively acceptable" solutions to the decision-Making team and we identify robust solutions. Then, these approaches provide flexibility to the decision phase and contribute to the consideration of uncertainty in the simulation optimization of the system.
2

Approches intelligentes pour le pilotage adaptatif des systèmes en flux tirés dans le contexte de l'industrie 4.0 / Intelligent approaches for handling adaptive pull control systems in the context of industry 4.0

Azouz, Nesrine 28 June 2019 (has links)
De nos jours, de nombreux systèmes de production sont gérés en flux « tirés » et utilisent des méthodes basées sur des « cartes », comme : Kanban, ConWIP, COBACABANA, etc. Malgré leur simplicité et leur efficacité, ces méthodes ne sont pas adaptées lorsque la production n’est pas stable et que la demande du client varie. Dans de tels cas, les systèmes de production doivent donc adapter la tension de leur flux tout au long du processus de fabrication. Pour ce faire, il faut déterminer comment ajuster dynamiquement le nombre de cartes (ou de ‘e-card’) en fonction du contexte. Malheureusement, ces décisions sont complexes et difficiles à prendre en temps réel. De plus, dans certains cas, changer trop souvent le nombre de cartes kanban peut perturber la production et engendrer un problème de nervosité. Les opportunités offertes par l’industrie 4.0 peuvent être exploitées pour définir des stratégies intelligentes de pilotage de flux permettant d’adapter dynamiquement ce nombre de cartes kanban.Dans cette thèse, nous proposons, dans un premier temps, une approche adaptative basée sur la simulation et l'optimisation multi-objectif, capable de prendre en considération le problème de la nervosité et de décider de manière autonome (ou d'aider les gestionnaires)  quand et où ajouter ou retirer des cartes Kanban. Dans un deuxième temps, nous proposons une nouvelle approche adaptative et intelligente basée sur un réseau de neurones dont l’apprentissage est d’abord réalisé hors ligne à l’aide d’un modèle numérique jumeau (simulation), exploité par une optimisation multi-objectif. Après l’apprentissage, le réseau de neurones permet de décider en temps réel, quand et à quelle étape de fabrication il est pertinent de changer le nombre de cartes kanban. Des comparaisons faites avec les meilleures méthodes publiées dans la littérature montrent de meilleurs résultats avec des changements moins fréquents. / Today, many production systems are managed in "pull" control system and used "card-based" methods such as: Kanban, ConWIP, COBACABANA, etc. Despite their simplicity and efficiency, these methods are not suitable when production is not stable and customer demand varies. In such cases, the production systems must therefore adapt the “tightness” of their production flow throughout the manufacturing process. To do this, we must determine how to dynamically adjust the number of cards (or e-card) depending on the context. Unfortunately, these decisions are complex and difficult to make in real time. In addition, in some cases, changing too often the number of kanban cards can disrupt production and cause a nervousness problem. The opportunities offered by Industry 4.0 can be exploited to define smart flow control strategies to dynamically adapt this number of kanban cards.In this thesis, we propose, firstly, an adaptive approach based on simulation and multi-objective optimization technique, able to take into account the problem of nervousness and to decide autonomously (or to help managers) when and where adding or removing Kanban cards. Then, we propose a new adaptive and intelligent approach based on a neural network whose learning is first realized offline using a twin digital model (simulation) and exploited by a multi-objective optimization method. Then, the neural network could be able to decide in real time, when and at which manufacturing stage it is relevant to change the number of kanban cards. Comparisons made with the best methods published in the literature show better results with less frequent changes.

Page generated in 0.1533 seconds