• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Computational and Experimental Approach for Non-destructive Testing by Laser Shearography

Chen, Xiaoran 06 August 2014 (has links)
"Non-destructive testing (NDT) is critical to many precision industries because it can provide important information about the structural health of critical components and systems. In addition, NDT can also identify situations that could potentially lead to critical failures. Specifically, NDT by optical methods have become popular because of their non-contact and non-invasive nature. Shearography is a high-resolution optical NDT method for identification and characterization of structural defects in components and has gained wide acceptance over the last decade. Traditional workflow of NDT by shearography has been determined to be inefficient, due to the requirements of having experienced operators that must determine the most suitable loading methods to identify defects in samples under testing as well as to determine the best system arrangement for obtaining the maximum measuring sensitivity. To reduce the number of experiments that are required and to allow inspectors to perform NDT by laser shearography in a more efficient way, it is necessary to optimize the experimental workflow. The goal of the optimization would be an appropriate selection of all experimental variables including loading methods, boundary conditions, and system¡¯s sensitivities, in order to avoid repeating experiments several times in the processes of components characterization and health monitoring. To achieve this goal, a hybrid approach using shearographic fringe prediction with Finite Element Analysis (FEA) has been developed. In the FEA simulations, different loading conditions are applied to samples with defects, and in turn, the shearographic fringes are predicted. Fringe patterns corresponding to specific loading conditions that are capable of detecting defects are chosen and experimental tests are performed using those loading conditions. As a result, using this approach, inspectors could try different combinations of loading methods, and system¡¯s sensitivities to investigate and select appropriate experimental parameters to improve defect detection capabilities of the system by using low-cost computer simulations instead of lengthy and expensive experiments. In addition, to improve the identification of defects on the sample, camera calibration and image registration algorithms are used to project the detected defects on the sample itself to locate and visualize the position of defects during shearographic investigations. This hybrid approach is illustrated by performing NDT of a plate made of acrylic that has a partial hole at the center. Fringe prediction with finite element analysis are used to characterize the optimized experimental procedures and in turn, corresponding measurements are performed. A multimedia projector is employed to project the defects on the surface of the plate in order to visualize the location of the partial hole (defect). Furthermore, shearographic system is used for other applications including NDT of a composites plate and of a thin latex membrane. The procedures shows the effectiveness of the approach to perform NDT with shearography methods. "
2

Parametric Opto-Mechanical Performance Analysis of Mounted Lenses Under Thermal Loading

Kadlec, Kal, Kadlec, Kal January 2017 (has links)
Mounting of lenses in opto-mechanical assemblies can create surface figure errors and refractive index changes through thermal and pre-load stresses. As lenses and barrels change in size under temperature changes, the optical performance degrades due to stress and surface deformations. Currently there is no way of determining the effect of these mechanical perturbations on the system wavefront without performing tedious finite element analysis. Most in-depth opto-mechanical analyses involve case-by-case studies with specific designs while previous general studies fail to take into account the complex geometries. The assumptions made by previous general studies ignore the effects of lens shape. These omissions can have a large effect on the stiffness, stress and surface figure error. A parametric model can combine the best of both an in-depth and general study. By parametrizing the model, a simple analysis can be executed for approximating the environmental-mechanical effects on optical performance. This eliminates the time it takes for an opto-mechanical design to be iterated for an optical or mechanical engineer. This tool could be used for early opto-mechanical design or for finite element analysis verification. The parametric model allows the exploration of the broader design study without confining it to a local design space.
3

Etude des cavités actives dans les nanostructures périodiques à gap de photons / Study of the nanostructured active cavities with photonic bandgaps

Soussi, Abdallah El 09 July 2019 (has links)
Dans cette thèse, une étude des microstructures périodiques et de leurs applications à la modulation optique par ondes acoustiques est présentée. Plus spécifiquement, le sujet traite du couplage opto-mécanique dans les cavités des cristaux phoXoniques. Cette étude montre comment la théorie des perturbations fournit un outil efficace d’analyse et de prédiction du comportement de la modulation dans de telles structures. Cette méthode permet également d’économiser du temps de calcul en comparaison aux calculs numériques purs. L'étude théorique de la propagation des ondes dans les milieux périodiques est d'abord introduite, puis les paramètres de l'existence simultanée des bandes interdites photoniques et phononiques sont déduites. Le développement d’une méthode semi-analytique ayant pour but d’analyser l'efficacité du couplage acousto-optique dans les structures périodiques artificielles est ensuite réalisé. La théorie des perturbations est développée jusqu'au 2ème ordre. Celle-ci, associée à des considérations de symétrie, est utilisée pour l'interprétation des résultats. Une illustration de la versatilité de la méthode, basée d'une cavité ponctuelle L1 sur substrat silicium, est présentée. Les résultats obtenus sont en accord avec ceux donnés par une méthode purement numérique. / In this thesis, a study of periodic microstructures and their applications to optical modulation by acoustical waves is presented. More specifically, it deals with opto-mechanical coupling in phoXonic crystal cavities. This study shows how the perturbation theory provides an efficient tool to analyse and predict the behaviour of modulation in such structures. Moreover, when compared to pure numerical ones, this method leads to calculation time saving. The theory of periodic media is first introduced and then we derive the parameters for the simultaneous existence of photonic and phononic bandgaps. We end up by the development of a semi-analytical method to analyze acousto-optical coupling efficiency in artificial periodic structures. The perturbation theory is developed up to 2nd order and is used together with symmetry considerations for interpretations. An illustration of the versatility of the developed method is presented using an L1 point defect cavity on silicon substrate and validated with classical numerical results.
4

Optimisation du pilotage de chaînes opto-mécaniques pour l'exécution de trajectoires en fabrication additive par fusion laser sur lit de poudre / Control optimization of opto-mechanical chain for the execution of trajectories in laser powder bed fusion process

Godineau, Kévin 28 June 2019 (has links)
En fabrication additive métallique par fusion laser sur lit de poudre, la géométrie et les caractéristiques mécaniques des pièces produites sont générées au cours de la fabrication. Ces deux aspects sont grandement influencés par les trajectoires du spot laser et par la maîtrise de l'énergie apportée à la poudre localement. La commande numérique dont le rôle est de générer les consignes à envoyer aux actionneurs a donc un impact conséquent sur la qualité des pièces produites.Ces travaux proposent d'étudier l'impact des traitements effectués dans la commande numérique sur les trajectoires réalisées et sur l'énergie apportée à la matière. Dans la littérature, peu de travaux traitent de ces aspects en fabrication additive. C'est pourquoi une plateforme expérimentale est mise en œuvre et utilisée afin d'analyser et de mieux comprendre les opérations actuellement implémentées dans les commandes numériques industrielles.Un modèle mathématique représentatif de la géométrie de la machine est d'abord établi. Ce modèle permet de convertir les trajectoires du spot laser en consigne pour les actionneurs. Le modèle développé est utilisé afin d'améliorer l'étape de calibration des machines. Une fois le système calibré, les consignes envoyées aux actionneurs sont étudiées. Les différents traitements effectués dans la commande numérique industrielle sont analysés, des limitations sont mises en évidence et plusieurs propositions d'améliorations sont implémentées. Tous ces développements sont ensuite utilisés afin de maîtriser finement l'énergie apportée à la matière dans le cas de certaines trajectoires adaptées au procédé. Les développements scientifiques proposés dans ces travaux sont tous validés expérimentalement sur une machine de fabrication additive ou sur le banc d'essai développé. Les travaux effectués permettent d'envisager de nombreuses perspectives concernant l'amélioration des traitements réalisés dans la commande numérique en fabrication additive. / In metal additive manufacturing by laser powder bed fusion, the geometry and mechanical characteristics of the produced parts are generated during the manufacturing process. These two aspects are greatly influenced by the laser spot trajectories, and by the control of the energy provided to the powder locally. The numerical control system, whose purpose is to generate instructions to be sent to actuators, has therefore a significant impact on the quality of the parts produced.This work proposes to study the local impact of the operations carried out in the numerical control on both the trajectories executed and the energy provided to the material. In the literature, few studies have addressed these aspects in additive manufacturing. For this reason, an experimental platform is implemented and used to analyze and better understand the operations currently implemented in industrial numerical controls.First, a mathematical model representative of the machine geometry is established. This model converts the laser spot trajectories into instructions for actuators. The model developed is used to improve the calibration step of the machines. Once the system is calibrated, the instructions sent to the actuators are studied. The various processes carried out in the industrial numerical control are analysed, limitations are highlighted and several proposals for improvements are implemented. All these developments are then used to precisely control the energy supplied to the material in the case of certain trajectories adapted to the process. The scientific developments proposed in these works are all validated experimentally on an additive manufacturing machine or on the test bench developed. The work carried out makes it possible to envisage many perspectives concerning the improvement of the treatments carried out inside the numerical control in additive manufacturing.
5

Desenvolvimento de um sistema opto-mecânico para micro usinagem com laser de femtosegundos / Development of an opto-mechanical system for micro machining with femtosecond laser

José Tort Vidal 08 June 2010 (has links)
A usinagem de estruturas micrométricas pode ser feita com pulsos laser de nano, pico ou fentossegundos. Destes, porém, somente os mais curtos podem resultar em uma interação não térmica com a matéria, o que evita a fusão, formação de rebarba e zona afetada pelo calor. Devido à sua baixa potência média, contudo, a sua utilização na produção em massa somente pode ser considerada em casos muito especiais, isto é, quando o processamento não-térmico é essencial. Este é o caso da usinagem de semicondutores, aços elétricos, produção de MEMS (sistemas micro eletro-mecânicos), de micro canais e diversos dispositivos médicos e biológicos. Assim, visando a produção destes tipos de estruturas, uma estação de trabalho foi construída com capacidade de controlar os principais parâmetros de processo necessários para uma usinagem micrométrica com laser de pulsos ultracurtos. Os principais problemas deste tipo de estação são o controle da fluência e do posicionamento do ponto focal. Assim, o controle do diâmetro do feixe (no foco) e da energia devem ser feitos com grande precisão. Além disso, o posicionamento do ponto focal com precisão micrométrica nos três eixos, também é de fundamental importância. O sistema construído neste trabalho apresenta soluções para estes problemas, utilizando diversos sensores e posicionadores controlados simultaneamente por um único programa. A estação de trabalho recebe um feixe vindo de um laser de pulsos ultracurtos localizado em outro laboratório, e manipula este feixe de maneira a focalizá-lo com precisão na superfície da amostra a ser usinada. Os principais parâmetros controlados dinamicamente são a energia, o número de pulsos e o posicionamento individual de cada um deles. A distribuição espacial da intensidade, a polarização e as vibrações também foram medidas e otimizadas. O sistema foi testado e aferido com medidas de limiar de ablação do silício, que é um material bastante estudado neste regime de operação laser. Os resultados, quando confrontados com a literatura, mostram a confiabilidade e a precisão do sistema. A automatização, além de aumentar esta precisão, também aumentou a rapidez na obtenção dos resultados. Medidas de limiar de ablação também foram realizadas para o metal molibdênio, levando a resultados ainda não vistos na literatura. Assim, de acordo com o objetivo inicial, o sistema foi desenvolvido e está pronto para utilização em estudos que levem à produção de estruturas micrométricas. / Machining of very small structures has been made with nano, pico and femtosecond pulsed lasers. Among then, only femtosecond lasers may result in nonthermal interaction with matter, avoiding melting, formation of slag and heat affected zone. Mass production with such lasers yet can only be considered in cases where nonthermal effects are of prime importance. This is the case in machining of semiconductors and electric steels, the production of MEMS, microchannels, and many medical and biological devices. Hence, a workstation for production of such kind of microstructures was built with the capability of controlling the main parameters necessary for the machining process. Control of the laser fluence and focus positioning are the main concern in this kind of processing. So, the control of the laser beam diameter (in the focus) and of the pulse energy must be very precise. Positioning of focal point with micrometric precision in the three axes is also fundamental. The system built in this work provides solutions for these problems incorporating several sensors and positioning stages simultaneously controlled by a single software. The workstation receives a laser beam coming from another laboratory and delivers it to the surface of the sample managing with precision the main process parameters. The system can dynamically control the energy, number of pulses and positioning for each individual laser spot. Besides, the spatial distribution of the laser intensity, polarization and vibrations were also measured and optimized. The system was tested and calibrated with threshold ablation measurement for silicon, which is well studied in this regime of laser operation. The results where compared with data found in the literature and attested the reliability and precision of the system. Besides the increase in precision, the automation also turned much faster the data acquisition. Threshold ablation for metallic molybdenum was also obtained and resulted in data not found in the literature yet. Concluding the initial goal, the workstation was developed and is ready to be used in studies that can lead to production of micrometric structures.
6

Desenvolvimento de um sistema opto-mecânico para micro usinagem com laser de femtosegundos / Development of an opto-mechanical system for micro machining with femtosecond laser

Vidal, José Tort 08 June 2010 (has links)
A usinagem de estruturas micrométricas pode ser feita com pulsos laser de nano, pico ou fentossegundos. Destes, porém, somente os mais curtos podem resultar em uma interação não térmica com a matéria, o que evita a fusão, formação de rebarba e zona afetada pelo calor. Devido à sua baixa potência média, contudo, a sua utilização na produção em massa somente pode ser considerada em casos muito especiais, isto é, quando o processamento não-térmico é essencial. Este é o caso da usinagem de semicondutores, aços elétricos, produção de MEMS (sistemas micro eletro-mecânicos), de micro canais e diversos dispositivos médicos e biológicos. Assim, visando a produção destes tipos de estruturas, uma estação de trabalho foi construída com capacidade de controlar os principais parâmetros de processo necessários para uma usinagem micrométrica com laser de pulsos ultracurtos. Os principais problemas deste tipo de estação são o controle da fluência e do posicionamento do ponto focal. Assim, o controle do diâmetro do feixe (no foco) e da energia devem ser feitos com grande precisão. Além disso, o posicionamento do ponto focal com precisão micrométrica nos três eixos, também é de fundamental importância. O sistema construído neste trabalho apresenta soluções para estes problemas, utilizando diversos sensores e posicionadores controlados simultaneamente por um único programa. A estação de trabalho recebe um feixe vindo de um laser de pulsos ultracurtos localizado em outro laboratório, e manipula este feixe de maneira a focalizá-lo com precisão na superfície da amostra a ser usinada. Os principais parâmetros controlados dinamicamente são a energia, o número de pulsos e o posicionamento individual de cada um deles. A distribuição espacial da intensidade, a polarização e as vibrações também foram medidas e otimizadas. O sistema foi testado e aferido com medidas de limiar de ablação do silício, que é um material bastante estudado neste regime de operação laser. Os resultados, quando confrontados com a literatura, mostram a confiabilidade e a precisão do sistema. A automatização, além de aumentar esta precisão, também aumentou a rapidez na obtenção dos resultados. Medidas de limiar de ablação também foram realizadas para o metal molibdênio, levando a resultados ainda não vistos na literatura. Assim, de acordo com o objetivo inicial, o sistema foi desenvolvido e está pronto para utilização em estudos que levem à produção de estruturas micrométricas. / Machining of very small structures has been made with nano, pico and femtosecond pulsed lasers. Among then, only femtosecond lasers may result in nonthermal interaction with matter, avoiding melting, formation of slag and heat affected zone. Mass production with such lasers yet can only be considered in cases where nonthermal effects are of prime importance. This is the case in machining of semiconductors and electric steels, the production of MEMS, microchannels, and many medical and biological devices. Hence, a workstation for production of such kind of microstructures was built with the capability of controlling the main parameters necessary for the machining process. Control of the laser fluence and focus positioning are the main concern in this kind of processing. So, the control of the laser beam diameter (in the focus) and of the pulse energy must be very precise. Positioning of focal point with micrometric precision in the three axes is also fundamental. The system built in this work provides solutions for these problems incorporating several sensors and positioning stages simultaneously controlled by a single software. The workstation receives a laser beam coming from another laboratory and delivers it to the surface of the sample managing with precision the main process parameters. The system can dynamically control the energy, number of pulses and positioning for each individual laser spot. Besides, the spatial distribution of the laser intensity, polarization and vibrations were also measured and optimized. The system was tested and calibrated with threshold ablation measurement for silicon, which is well studied in this regime of laser operation. The results where compared with data found in the literature and attested the reliability and precision of the system. Besides the increase in precision, the automation also turned much faster the data acquisition. Threshold ablation for metallic molybdenum was also obtained and resulted in data not found in the literature yet. Concluding the initial goal, the workstation was developed and is ready to be used in studies that can lead to production of micrometric structures.
7

Advances in experimental methods to probe surface relief grating formation mechanism in photosensitive materials

Yadavalli, Nataraja Sekhar January 2014 (has links)
When azobenzene-modified photosensitive polymer films are irradiated with light interference patterns, topographic variations in the film develop that follow the electric field vector distribution resulting in the formation of surface relief grating (SRG). The exact correspondence of the electric field vector orientation in interference pattern in relation to the presence of local topographic minima or maxima of SRG is in general difficult to determine. In my thesis, we have established a systematic procedure to accomplish the correlation between different interference patterns and the topography of SRG. For this, we devise a new setup combining an atomic force microscope and a two-beam interferometer (IIAFM). With this set-up, it is possible to track the topography change in-situ, while at the same time changing polarization and phase of the impinging interference pattern. To validate our results, we have compared two photosensitive materials named in short as PAZO and trimer. This is the first time that an absolute correspondence between the local distribution of electric field vectors of interference pattern and the local topography of the relief grating could be established exhaustively. In addition, using our IIAFM we found that for a certain polarization combination of two orthogonally polarized interfering beams namely SP (↕, ↔) interference pattern, the topography forms SRG with only half the period of the interference patterns. Exploiting this phenomenon we are able to fabricate surface relief structures below diffraction limit with characteristic features measuring only 140 nm, by using far field optics with a wavelength of 491 nm. We have also probed for the stresses induced during the polymer mass transport by placing an ultra-thin gold film on top (5–30 nm). During irradiation, the metal film not only deforms along with the SRG formation, but ruptures in regular and complex manner. The morphology of the cracks differs strongly depending on the electric field distribution in the interference pattern even when the magnitude and the kinetic of the strain are kept constant. This implies a complex local distribution of the opto-mechanical stress along the topography grating. The neutron reflectivity measurements of the metal/polymer interface indicate the penetration of metal layer within the polymer resulting in the formation of bonding layer that confirms the transduction of light induced stresses in the polymer layer to a metal film. / Azobenzolhaltige Polymere gehören zu einer Klasse funktionaler Materialien, bei denen durch ein äußeres Strahlungsfeld eine starke mechanische Reaktion ausgelöst werden kann. Durch die Bindung an das Polymerrückgrat können die Azobenzole, die unter UV-Belichtung eine Photoisomerisierung ausführen, was zum Teil drastische Effekte zur Folge hat. Unter Belichtung mit Intensitätsmustern, d.h. mit räumlich variierender Verteilung der Polarisation oder der Intensität des einfallenden Lichts verändert sich die Topographie der azobenzolhaltigen Filme, was zur Bildung von Oberflächengittern (engl. Surface Relief Gratings, SRG) führt. In dieser Arbeit wurde eine neue Methode vorgeschlagen, bei der das Verhalten elastischer/morphologischer Eigenschaften unter verschiedenen Belichtungsbedingungen, d.h. mit unterschiedlicher Verteilung der Polarisation und der Intensität in situ lokal als Funktion der Position entlang der SRG aufgenommen werden kann. Außerdem wurde hier vorgeschlagen, opto-mechanische Spannungen, die innerhalb der photosensitiven Polymerfilme während der Belichtung entstehen, mit Hilfe dünner aufgebrachter metallischen Schichten abzubilden und zu analysieren.

Page generated in 0.0683 seconds