1 |
Efficient Error Analysis Assessment in Optical DesignHerman, Eric January 2014 (has links)
When designing a lens, cost and manufacturing concerns are extremely challenging, especially with radical optical designs. The tolerance process is the bridge between design and manufacturing. Three techniques which improve the interaction between lens design and engineers are successfully shown in this thesis along with implementation of these techniques. First, a method to accurately model optomechanical components within lens design is developed and implemented. Yield improvements are shown to increase by approximately 3% by modeling optomechanical components. Second, a method utilizing aberration theory is applied to discover potential tolerance sensitivity of an optical system through the design process. The use of aberration theory gives an engineer ways to compensate for errors. Third, a method using tolerance grade mapping is applied to error values of an optical system. This mapping creates a simplified comparison method between individual tolerances and lens designs.
|
2 |
Optomechanical System Development of the AWARE Gigapixel Scale CameraSon, Hui January 2013 (has links)
<p>Electronic focal plane arrays (FPA) such as CMOS and CCD sensors have dramatically improved to the point that digital cameras have essentially phased out film (except in very niche applications such as hobby photography and cinema). However, the traditional method of mating a single lens assembly to a single detector plane, as required for film cameras, is still the dominant design used in cameras today. The use of electronic sensors and their ability to capture digital signals that can be processed and manipulated post acquisition offers much more freedom of design at system levels and opens up many interesting possibilities for the next generation of computational imaging systems.</p><p>The AWARE gigapixel scale camera is one such computational imaging system. By utilizing a multiscale optical design, in which a large aperture objective lens is mated with an array of smaller, well corrected relay lenses, we are able to build an optically simple system that is capable of capturing gigapixel scale images via post acquisition stitching of the individual pictures from the array. Properly shaping the array of digital cameras allows us to form an effectively continuous focal surface using off the shelf (OTS) flat sensor technology.</p><p>This dissertation details developments and physical implementations of the AWARE system architecture. It illustrates the optomechanical design principles and system integration strategies we have developed through the course of the project by summarizing the results of the two design phases for AWARE: AWARE-2 and AWARE-10. These systems represent significant advancements in the pursuit of scalable, commercially viable snapshot gigapixel imaging systems and should serve as a foundation for future development of such systems.</p> / Dissertation
|
3 |
Advances In The Opto-mechanical Design And Alignment Of The Hehsi Imaging Spectrometer Based On A Sagnac InterferometerSchreiber, Michael Stuart 01 January 2005 (has links)
The High Efficiency HyperSpectral Imager (HEHSI) is a Fourier Transform hyperspectral imager based on a Sagnac interferometer. This thesis research concentrates on the design upgrade and calibration of HEHSI from a proof of concept instrument to a prototype field instrument. Stability is enhanced by removing degrees of freedom and alignment is enhanced by providing for in-situ adjustments. The use of off the shelf components allows for reduced development time and cost constraints. HEHSI is capable of multiple configurations to accommodate sensors and optics with specialized capabilities for multiple wavelength ranges and viewing conditions. With a spectral response of 400 to 1000 nanometers in the visible and very near IR as well as 900 to 1700nm in the Near IR. Creation and use of a real time feedback alignment utility allow quantifiable signal comparison and image alignment. Advances allow for HEHSI to remain aligned during data collection sessions and confirmation of alignment through quantitative measures.
|
4 |
Fenômenos quânticos e localização em sistemas optomecânicos / Quantum effects and localization in optomechanical systemsRoque, Thales Figueiredo, 1988- 21 June 2017 (has links)
Orientador: Antonio Vidiella Barranco / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-09-02T14:05:56Z (GMT). No. of bitstreams: 1
Roque_ThalesFigueiredo_D.pdf: 3246905 bytes, checksum: 13e2147eea29b73345cec6df9138b5a1 (MD5)
Previous issue date: 2017 / Resumo: Os sistemas optomecânicos são sistemas físicos onde a radiação interage com graus de liberdade mecânicos por meio da pressão de radiação. Estes sistemas destacam-se pela flexibilidade e pelo alto grau de controle sobre a interação optomecânica. Nesta tese, nós apresentamos um estudo teórico acerca dos sistemas optomecânicos, o qual pode ser dividido em duas partes: a primeira parte se dedica ao uso de sistemas optomecânicos na geração de estados não clássicos, e a segunda parte se dedica ao estudo da localização de Anderson em redes optomecânicas. Na primeira parte, nós estudamos, primeiramente, a geração de estados da radiação com estatística sub-Poissoniana no regime quântico não linear. Este tópico já havia sido estudado anteriormente em um sistema convencional composto por uma cavidade ótica acoplada a um oscilador mecânico. Neste trabalho, consideramos um sistema onde duas cavidades óticas interagem com um único oscilador mecânico. Nós mostramos que o sistema estudado permite a geração de estados com estatística sub-Poissoniana significativamente mais acentuada do que o sistema convencional. Além disso, os estados gerados são mais robustos com respeito ao ruído térmico do ambiente. Em seguida, estudamos a geração de estados estacionários comprimidos do oscilador mecânico em sistemas optomecânicos quadráticos operando no regime quântico linear. Nós mostramos que, bombeando a cavidade ótica com \textit{lasers} com frequências e amplitudes específicas, é possível gerar estados estacionários comprimidos do oscilador mecânico. Na segunda parte, nós estudamos a localização de Anderson em redes optomecânicas desordenadas. Redes optomecânicas são arranjos espacialmente ordenados de inúmeros modos óticos e mecânicos que interagem entre si por meio do acoplamento optomecânico. Em um cenário realista, devido a imprecisões na fabricação deste sistema, os parâmetros seriam desordenados. Nossos resultados mostram que os autoestados deste sistema são exponencialmente localizados. Além disso, observamos a existência de dois regimes de operação em redes optomecânicas desordenadas: o regime de acoplamento fraco e o regime de acoplamento forte. A transição entre estes dois regimes apresenta características não triviais que poderiam ser utilizadas para detectar experimentalmente a localização nestas estruturas. Nós estudamos também a dinâmica clássica de redes optomecânicas desordenadas no regime instável. Este é um tópico bastante desafiador, uma vez que a dinâmica é essencialmente não linear neste regime. Nós mostramos que, em um regime de parâmetros específico, é possível utilizar a aproximação linear para tempos curtos, e os resultados desta aproximação fornecem importantes informações sobre a dinâmica não linear. Nós ainda analisamos brevemente a emergência de comportamento caótico neste regime / Abstract: Optomechanical systems are systems in which radiation interacts with mechanical degrees of freedom via radiation pressure. These systems are well known for allowing great flexibility and high control over the optomechanical interaction. In this thesis, we present a theoretical investigation about optomechanical systems. This investigation can be divided in two parts: the first part is devoted to the generation of nonclassical states in optomechanical systems, and the second part is devoted to the study of Anderson localization in optomechanical arrays. In the first part, we study, firstly, the generation of optical sub-Poissonian states in the quantum nonlinear regime. This topic has been previously investigated in a conventional optomechanical system with one optical cavity coupled to one mechanical oscillator. Here, we investigate a system with two optical cavities coupled to one mechanical oscillator. We show that our system allows the generation of stronger sub-Poissonian states in comparison with the conventional system. In addition, the states generated in our system are more robust against thermal noise. Next, we investigate the generation of squeezed steady states of the mechanical oscillator in a quadratic optomechanical system operating in the quantum linear regime. We show that, if the optical cavity is pumped by lasers with specific frequencies and amplitudes, it is possible to generate such states. In the second part, we investigate Anderson localization in disordered optomechanical arrays. Optomechanical arrays are periodic arrays of optical and mechanical modes, which interact with each other via optomechanical coupling. In a realistic scenario, due to imprecisions in the fabrication of such a structure, the parameters of the system will be disordered. We show that the eigenstates in this system are exponentially localized. Furthermore, we show the existence of two regimes in disordered optomechanical arrays: the weak coupling regime and the strong coupling regime. The transition between these regimes displays nontrivial features that could be used to detect localization experimentally. We study also the classical dynamics of disordered optomechanical arrays in the unstable regime. This is a very challenging topic, since the unstable regime is essentially nonlinear. We show that, for a specific regime of parameters, it is possible to use the linear approximation for small times, and the linear results give us important informations about the nonlinear dynamics. We analyze briefly the emergence of chaotic behavior in the regime / Doutorado / Física / Doutor em Ciências / 2012/10476-0 / FAPESP
|
5 |
Opto-mechanical coupling effects on metallic nanostructuresBen, Xue 08 April 2016 (has links)
Surface plasmon is the quantized collective oscillation of the free electron gas in a metallic material. By coupling surface plasmons with photons in different nanostructures, researchers have found surface plasmon polaritons (SPP) and localized surface plasmon resonance (LSPR), which are widely adopted in biosensing, single molecule sensing and detection via surface enhanced raman scattering (SERS), photothermal ablation treatments for cancer, optical tagging and detection, strain sensing, metamaterials, and other applications.
The overall objective of this dissertation is to investigate both how mechanics impacts the optical properties, and also how optics impacts the mechanical properties of metal nanostructures reversely. Mechanically engineering individual nanostructures(forward coupling) offers the freedom to alter the optical properties with more flexibility and tunability. It is shown that elastic strain can be applied to gold nanowires to reduce the intrinsic losses for subwavelength optical signal processing, leading to an increase of up to 70% in the surface plasmon polariton propagation lengths at resonance frequencies. Apart from strain engineering, defects are another important aspect of mechanically engineering nanoscale materials, whose impacts on the optical properties of metal nanostructures remain unresolved. An atomic electrodynamic model has been derived to demonstrate that those effects are crucial for ultrasmall nanoparticles with characteristic sizes around 2 nm, and can be safely ignored for those larger than about 5 nm due to the important contribution of nanoscale surface effects.
Another key focus of this research project (reverse coupling) is to investigate the currently unknown effects that an external optical field has on the mechanical properties of metal nanostructures. Since each atom in the nanostructure acts as a dipole due to induced electron motions, this optical excitation introduces additional dipolar forces that add to the standard mechanical atomic interactions, which could alter the mechanical properties of the nanostructures. Furthermore, it is shown that when linking mechanics with LSPR, because the metal is dispersive, the mechanical behavior or the strength of the nanostructure should be dependent on the frequency of the electromagnetic excitation. To study this phenomenon, a simpler case with an electrostatic field excitation is considered first, and conclusions are reached on how static fields can be used to tune the elasticity of metallic nanostructures with different sizes and axial orientations and surfaces. Then building upon those understandings, studies were carried out in determining the effects of an optical field, specifically at LSPR frequency, on the mechanical properties of metallic nanostructures. It is found that the initial relaxation strain induced by the static field or optical field is the key factor leading to the variations in the stiffness of the metallic nanostructures that are excited by optical fields at the LSPR frequencies.
|
6 |
Radiation pressure cooling of a silica optomechanical resonatorPark, Young-Shin, 1972- 12 1900 (has links)
xi, 125 p. : ill. (some col.) A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / This dissertation presents experimental and theoretical studies of radiation pressure cooling in silica optomechanical microresonators where whispering gallery modes (WGMs) are coupled to thermal mechanical vibrations. In an optomechanical system, circulating optical fields couple to mechanical vibrations via radiation pressure, inducing Stokes and anti-Stokes scattering of photons. In analogy to laser cooling of trapped ions, the mechanical motion can in principle be cooled to its ground state via the anti-Stokes process in the resolved-sideband limit, in which the cavity photon lifetime far exceeds the mechanical oscillation period.
Our optomechanical system is a slightly deformed silica microsphere (with a diameter 25-30 μm ), featuring extremely high Q -factors for both optical ( Q o ∼ 10 8 ) and mechanical ( Q m ∼ 10 4 ) systems. Exploiting the unique property of directional evanescent escape in the deformed resonator, we have developed a free-space configuration for the excitation of WGMs and for the interferometric detection of mechanical displacement, for which the part of input laser that is not coupled into the microsphere serves as a local oscillator. Measurement sensitivity better than 5 × 10 -18 m /[Special characters omitted.] has been achieved. The three optically active mechanical modes observed in the displacement power spectrum are well described by finite element analysis.
Both radiation pressure cooling and parametric instabilities have been observed in our experiments. The dependence of the mechanical resonator frequency and linewidth on the detuning as well as the intensity of the input laser show excellent agreement with theoretical calculations with no adjustable parameters.
The free-space excitation technique has enabled us to combine resolved sideband cooling with cryogenic cooling. At a cryogenic temperature of 1.4 K, the sideband cooling leads to an effective temperature as low as 210 m K for a 110 MHz mechanical oscillator, corresponding to an average phonon occupation of 37, which is one of the three lowest phonon occupations achieved thus far for optomechanical systems. The cooling process is limited by ultrasonic attenuation in fused silica, which should diminish when bath temperature is further lowered, with a 3 He cryostat, to a few hundred millikelvin. Our experimental studies thus indicate that we are tantalizingly close to realizing the ground-state cooling for the exploration of quantum effects in an otherwise macroscopic mechanical system. / Committee in charge: Michael Raymer, Chairperson, Physics;
Jens Noeckel, Member, Physics;
Hailin Wang, Member, Physics;
Paul Csonka, Member, Physics;
Jeffrey Cina, Outside Member, Chemistry
|
7 |
O campo eletromagnético quantizado submetido a ruído e acoplado a um oscilador mecânico / The quantized electromagnetic field submitted to noise and coupled to a mechanical oscillatorSiqueira, Maicon Zaniboni, 1986- 20 August 2018 (has links)
Orientador: Antonio Vidiella Barranco / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-20T20:42:28Z (GMT). No. of bitstreams: 1
Siqueira_MaiconZaniboni_M.pdf: 1258175 bytes, checksum: 2b8416f748d7b0825f2c173a2cf99c66 (MD5)
Previous issue date: 2012 / Resumo: Neste projeto será investigada a influência de ruído no processo de interação da radiação (campo quantizado) com a matéria (sistema mecânico mesoscópico). Consideraremos o modo do campo confinado em uma cavidade de alto fator de qualidade com um espelho fixo e o outro espelho móvel, este tratado como um oscilador mecânico suscetível à pressão de radiação do campo da cavidade. Investigaremos a dinâmica do sistema na situação em que o modo do campo confinado estará submetido a um ruído causando perda de coerência de fase / Abstract: In this project we will investigate the influence of noise in the process of interaction of radiation (quantized field) with the matter (mesoscopic mechanical system). We will consider the mode field confined in a cavity of high quality factor with a fixed mirror and one moving mirror, this treated as a mechanical oscillator susceptible to radiation pressure from cavity field. We will investigate the system dynamics in the situation that the confined mode eld is submitted to noise causing loss of phase coeherence / Mestrado / Física / Mestre em Física
|
8 |
Modelling and simulation of novel optoacoustic sensors for monitoring crack growth in pressure vessel steelsSayginer, Osman 25 May 2021 (has links)
The acoustic emission technique is an effective way to acquire crack information from material bodies at the microscopic level. Monitoring of the acoustic emission events provides a deeper understanding regarding the structural health status of critical constructions such as bridges, railways, pipelines, pressure vessels, etc. Thanks to the acoustic emission monitoring systems, it is possible to avoid catastrophic events and save lives, time, and money. For this reason, efforts to develop new acoustic emission sensor technologies, as well as the use of current acoustic emission sensors in new research fields, will contribute to the limited literature sources. Optical sensing systems provide good alternatives to the existing sensing technologies because of their wide range of detection bandwidths, adaptation to harsh environments, and low sensitivity to electromagnetic interference. For this reason, the first part of this thesis demonstrates an optoacoustic sensing methodology that enables the detection of acoustic emissions by optics. This sensing system consists of thin-film optical filters (TFOF) and an elastic microcavity layer. The sensing mechanism is similar to the Fabry Perot structures and it relies on resonance shifts of the cavity when there is a change in the cavity thickness similar to the Fabry Perot structures. Thus, the design, fabrication, and demonstration steps of a Fabry Perot elastic microcavity have been presented. Throughout the fabrication efforts, a new deposition protocol was developed. This deposition technique has enabled the deposition of TFOF on flexible substrates via the RF-sputtering technique. Thus, a new sensing configuration has been developed using flexible optical components. In the second chapter, an optical sensing methodology based on tunable spectral filters and flexible optical components is introduced. The design, fabrication, realization, and characterization of a proof-of-concept optomechanical sensor have been presented. The design step includes optical, mechanical, and optoacoustic correlation simulations using the Transfer Matrix Method, finite element analysis, and analytical models. Moreover, the fabrication part includes multilayer deposition on silica and flexible substrates using the RF-Sputtering technique and integration of these optical components into a 3D-printed housing together with electronic components. Eventually, the performance evaluation of the optomechanical sensor has been carried out and the experimental results showed that the sensor resonance frequency is around 515 Hz and the sensor is capable of detecting static loadings from 50 Pa to 235 Pa values. In the fourth chapter, seismic vulnerability analysis of a coupled Tank-Piping System has been performed using traditional acoustic emission sensors. Real-time performance evaluation of the pipeline as well as the structural health status of the critical parts were monitored. As a result, deformation levels of each critical part were investigated, and the processing of acoustic emission signals provided a more in-depth view of damage level of the analyzed components. Throughout the thesis, TFOFs are an integral part of this thesis. Therefore, both the design and simulation of TFOFs play a crucial role throughout this research work. The Transfer Matrix Method is used to simulate the optical performance of TFOFs. Moreover, in the final chapter, an automated design framework is presented for the design of TFOFs using a nature-inspired machine learning approach called Genetic algorithm. This design approach enables the design of sophisticated geometric configurations with unique optical capabilities. Therefore, not only the improvement of sensor response but also the new ways in the development of novel optical systems are demonstrated in this final chapter.
|
9 |
Phonons Manipulation in Silicon Chips Using Cavity OptomechanicsMercadé Morales, Laura 26 July 2021 (has links)
[ES] La optomecánica de cavidades se ocupa de la interacción entre la luz y la materia a través del efecto de presión de radiación cuando las ondas ópticas y mecánicas implicadas están confinadas en una cavidad. En estos sistemas optomecánicos, la interacción entre fotones y fonones da lugar a multitud de fenómenos en función de las condiciones en las que se excita el sistema. En particular, se pueden obtener dos regímenes distintos en los que se puede, o bien absorber fonones (denominado como enfriamiento de la cavidad), o bien éstos se pueden amplificar (régimen conocido como calentamiento de la cavidad). El primer régimen puede usarse, por ejemplo, para reducir la ocupación térmica del sistema y se usa comúnmente para aplicaciones relativas al procesado de información cuántica. Sin embargo, la amplificación de fonones, que puede ser desarrollada a temperatura ambiente, ha permitido conseguir alcanzar incluso las condiciones necesarias para obtener láseres de fonones, lo cual permite poder usar esta característica como elemento de referencia en aplicaciones relativas al procesado de señales de radiofrecuencia (RF).
En esta tesis se aborda el confinamiento simultáneo y la interacción de fotones y fonones en estructuras periódicas y en guías no suspendidas desarrolladas en sistemas CMOS compatibles basados en tecnología de silicio. A través del estudio experimental de estas estructuras periódicas, hemos demostrado que las cavidades optomecánicas pueden actuar como elementos clave en el dominio de la fotónica de microondas, donde todo el procesado de la información puede ser realizado en el dominio óptico a través de la manipulación de fonones en este sistema. En particular, mostramos que un solo oscilador optomecánico puede actuar tanto como un oscilador local y un mezclador de RF, y éste puede operar como un conversor de frecuencias de señales de cadenas de datos reales. Para mejorar esta funcionalidad, también se demuestra que es posible obtener tanto peines de frecuencias ópticos así como múltiples modos mecánicos confinados, aumentando así su rendimiento. Por otro lado, con el objetivo de poder solventar las posibles limitaciones de estos sistemas, en esta tesis también se exploran diferentes configuraciones que permiten la interacción acusto-óptica simultánea en la misma estructura. Específicamente, se analiza la interacción optomecánica en discos de alto índice que soportan estados cuasi-ligados en el continuo así como una propuesta de guías no suspendidas que soportan altas ganancias de Brillouin. Este último estudio debería permitir el desarrollo de sistemas optomecánicos no suspendidos donde el problema de la pérdida de fonones hacia el sustrato se resuelva, hecho que permitiría enormemente simplificar la fabricación de estos sistemas optomecánicos en chips de silicio así como su uso en múltiples aplicaciones. / [CA] L'optomecànica de cavitats s'ocupa de la interacció entre la llum i la matèria a través de l'efecte de pressió de radiació quan les ones òptiques i mecàniques implicades estan confinades en una cavitat. En aquests sistemes optomecànics, la interacció entre fotons i fonons dona lloc a multitud de fenòmens en funció de les condicions de les condicions en les quals s'excita el sistema. En particular, es poden obtindre dos règims diferents en els quals es pot, o bé, absorbir fonons (denominat com a refredament de la cavitat), o bé, es poden amplificar (règim conegut com a calfament de la cavitat). El primer règim pot usar-se, per exemple, per a reduir l'ocupació tèrmica del sistema i s'usa comunament per a aplicacions relatives al processament d'informació quàntica. No obstant això, l'amplificació de fonons, que pot ser desenvolupada a temperatura ambient, ha permés aconseguir fins i tot les condicions necessàries per a obtindre làsers de fonons, la qual cosa permet poder usar aquesta característica com a element de referència en aplicacions relatives al processament de senyals de radiofreqüència (RF). En aquesta tesi s'aborda el confinament simultani i la interacció de fotons i fonons en estructures periòdiques i en guies no suspeses en sistemes CMOS compatibles basats en tecnologia de silici. A través de l'estudi experimental d'aquestes estructures periòdiques, hem demostrat que les cavitats optomecàniques poden actuar com a elements clau en el domini de la fotònica de microones, on tot el processament de la informació pot ser realitzat en el domini òptic a través de la manipulació de fonons en aquest sistema. En particular, vam mostrar que només un oscil·lador optomecànic pot actuar tant com un oscil·lador local i un mesclador de RF, i aquest pot operar com un convertidor de freqüències de senyals de cadenes de dades reals. Per a millorar aquesta funcionalitat, també es demostra que és possible obtindre tant tren de freqüències òptics així com múltiples modes mecànics confinats, augmentant així el seu rendiment. D'altra banda, amb l'objectiu de poder solucionar les possibles limitacions d'aquests sistemes, en aquesta tesi també s'exploren diferents configuracions que permeten la interacció acusto-òptica simultània en la mateixa estructura. Específicament, s'analitza la interacció optomecànica en discos d'alt índex que suporten estats quasi-lligats en el continu així com una proposta de guies no suspeses que suporten altes ganancies de Brillouin. Aquest últim estudi hauria de permetre el desenvolupament de sistemes optomecànics no suspesos on el problema de la pèrdua de fonons cap al substrat es resolga, fet que permetria enormement simplificar la fabricació d'aquests sistema optomecànics en xips de silici així com el seu ús en diverses aplicacions. / [EN] Cavity optomechanics deals with the interaction of light and matter through the radiation pressure effect, when the involved optical and mechanical waves are confined in a cavity. In optomechanical systems, photon and phonon interaction give rise to a plethora of phenomena as a function of the driving conditions of the system. Relative to that, two distinctive regimes can be obtained which enable either the absorption of phonons (cavity cooling) or their amplification (cavity heating). The first regime can be used to reduce the thermal occupancy of the system and it is commonly used for quantum processing information applications. However, the amplification of phonons, which can be performed at room temperature, has enabled to even reach phonon lasing conditions, a feature that could be used as a reference element for RF processing applications.
In this thesis, we address the simultaneous confinement and interaction of photons and phonons in periodic structures and unreleased waveguides on CMOS-compatible silicon-based technology. Throughout the experimental study of those periodic structures, we demonstrate that optomechanical cavities can perform as key blocks in the microwave photonics domain where all the information processing can be performed in the optical domain through phonon manipulation. In particular, we show that a single optomechanical oscillator can perform as both a local oscillator and an RF mixer, and it can operate as a frequency-converted of real data stream signals. To improve its performance, it is also demonstrated that optical frequency combs can be obtained by means of this system and multiple mechanical mode confinement can also be achieved, thus improving the functionality of the system. On the other hand, in order to fulfill the possible limitations of those systems, we explore different configurations enabling the simultaneous acousto-optic interaction together into the same structure. Especially, optomechanical interaction in high-index disks supporting quasi-bound states in the continuum is addressed, as well as a proposal of unreleased waveguides supporting strong Brillouin gains is also reported. The last one should lead to unreleased optomechanical interacting systems where the issue of phonon leakage into the substrate is solved, which could enormously simplify the fabrication of optomechanical systems in silicon chips as well as their practical use in multiple applications. / This work has been carried out under the framework of the H2020 FET-Open EU project PHENOMEN. This Thesis was also supported by the Programa de Ayudas de Investigación y Desarrollo (PAID-01-16) de la Universitat Politècnica de València / Mercadé Morales, L. (2021). Phonons Manipulation in Silicon Chips Using Cavity Optomechanics [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/171461
|
10 |
Sistema mecânico como sonda de uma transição de fase quânticaSantos, Jader Pereira dos 18 March 2011 (has links)
Made available in DSpace on 2017-07-21T19:26:00Z (GMT). No. of bitstreams: 1
JADERSANTOS.pdf: 1951823 bytes, checksum: db75a73fc3676656399742b18f6eeda8 (MD5)
Previous issue date: 2011-03-18 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The Dicke model describes a system that contain a group of atoms coupled to a mode of electromagnetic field. One of the feature of this model is the present of second order quantum phase transition. In this work our main goal is to study the quantum phase transition present in the Dicke model through a mechanical probe. We consider that one of the mirrors in a optical cavity has the freedom to move under the effect
of linear restoring force. In this conditions, the mirror couples to the cavity field via pressure radiation interaction. In the thermodynamic limit, we found that the moving mirror decouples from the cavity while in the super radiant phase it suffers the action of a resulting classical force. A remarkable feature is that the entropy of the mirror is not dynamically changed in any phase when the thermodynamic limit is
taken. Consequently, the mechanical system will work as a probe to study the critical reservoir namely the Dicke system. / O modelo de Dicke descreve um sistema contendo um conjunto de átomos acoplados a um modo do campo eletromagnético. Uma das características desse modelo é que ele exibe uma transição de fase quântica de segunda ordem. Neste trabalho tivemos como principal objetivo estudar a transição de fase quântica presente nesse modelo através
de uma sonda mecânica. Consideramos que um dos espelhos da cavidade óptica tem liberdade para mover-se sob efeito de uma força restauradora linear. Nessas condições, o espelho livre se acopla, via interação de pressão de radiação, com o campo presente na cavidade. No limite termodinâmico observamos que na fase normal o espelho permanecerá desacoplado da cavidade, enquanto que na fase super-radiante o espelho sofre a ação de uma força clássica resultante. Uma característica importante é que a entropia do espelho não se altera dinamicamente em nenhuma das fases, quando no regime termodinâmico. Desse modo, o sistema mecânico funciona como uma sonda para estudar o reservatório (modelo de Dicke).
|
Page generated in 0.1185 seconds