• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 152
  • 18
  • 15
  • 8
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 232
  • 232
  • 82
  • 39
  • 27
  • 23
  • 23
  • 22
  • 21
  • 20
  • 20
  • 19
  • 18
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Integration and characterization of micromachined optical microphones

Jeelani, Mohammad Kamran 17 November 2009 (has links)
The focus of this study is the optoelectronic integration of a micro-optical displacement detection architecture with a biomimetic MEMS microphone membrane based on the directional hearing mechanism of the parasitic fly Ormia Ochracea. The micromachined microphones feature optical interferometric displacement detection achieved using a commercially available Vertical Cavity Surface Emitting Laser (VCSEL) coupled with a custom designed silicon photodiode array. This design is shown to have significant advantages over conventional hearing aid microphones, which employ capacitive detection. A Multi-Chip Module (MCM) optoelectronic package is designed to integrate the biomimetic membrane with the optical displacement detection electronics in order to produce a fully integrated acoustic sensor. The modular package components, which are fabricated using high resolution stereolithography apparatus (SLA) equipment, provide accurate optical alignment of the optoelectronic components and allow complete device integration in a package with a total volume under 0.5cc. Characterization of the integrated microphones is described in detail, including measurements of sensitivity, noise floor and directivity. A displacement resolution of 3.5x10⁻¹³ m/√Hz was measured between 4kHz and 16kHz in an anechoic test chamber, corresponding to a dynamic range of 115dB for the optical detection architecture. The total noise SPL of the device is 35.9dBA. Unlike capacitive microphones with similar noise levels, the device developed in this work exhibits first order dipole directivity patterns between 250Hz-1kHz, with an ideal Directivity Index of 4.8dB @ 1kHz and directional attenuation exceeding 25dB. With these results the optoelectronic package presented in this work demonstrates the viability of the integrated optical biomimetic microphones in compact, low power applications, specifically directional hearing aids.
152

Gallium nitride and aluminum gallium nitride-based ultraviolet photodetectors /

Li, Ting, January 2000 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2000. / Vita. Includes bibliographical references (leaves 126-147). Available also in a digital version from Dissertation Abstracts.
153

Organic optoelectronic devices based on platinum(II) complexes and polymers

Xiang, Haifeng. January 2005 (has links)
published_or_final_version / abstract / Electrical and Electronic Engineering / Doctoral / Doctor of Philosophy
154

Semiconductor Quantum Dash Broadband Emitters: Modeling and Experiments

Khan, Mohammed Zahed Mustafa 10 1900 (has links)
Broadband light emitters operation, which covers multiple wavelengths of the electromagnetic spectrum, has been established as an indispensable element to the human kind, continuously advancing the living standard by serving as sources in important multi-disciplinary field applications such as biomedical imaging and sensing, general lighting and internet and mobile phone connectivity. In general, most commercial broadband light sources relies on complex systems for broadband light generation which are bulky, and energy hungry. Recent demonstration of ultra-broadband emission from semiconductor light sources in the form of superluminescent light emitting diodes (SLDs) has paved way in realization of broadband emitters on a completely novel platform, which offered compactness, cost effectiveness, and comparatively energy efficient, and are already serving as a key component in medical imaging systems. The low power-bandwidth product is inherent in SLDs operating in the amplified spontaneous emission regime. A quantum leap in the advancement of broadband emitters, in which high power and large bandwidth (in tens of nm) are in demand. Recently, the birth of a new class of broadband semiconductor laser diode (LDs) producing multiple wavelength light in stimulated emission regime was demonstrated. This very recent manifestation of a high power-bandwidth-product semiconductor broadband LDs relies on interband optical transitions via quantum confined dot/dash nanostructures and exploiting the natural inhomogeneity of the self-assembled growth technology. This concept is highly interesting and extending the broad spectrum of stimulated emission by novel device design forms the central focus of this dissertation. In this work, a simple rate equation numerical technique for modeling InAs/InP quantum dash laser incorporating the properties of inhomogeneous broadening effect on lasing spectra was developed and discussed, followed by a comprehensive experimental analysis of a novel epitaxial structure design. The layered structure is based on chirping the barrier layer thickness of the over grown quantum dash layer, in a multi-stack quantum dash/barrier active region, with the aim of inducing additional inhomogeneity. Based on material-structure and device characterization, enhanced lasing-emission bandwidth is achieved from the narrow (2 u m)ridge-waveguide LDs as a result of the formation of multiple ensembles of quantum dashes that are electronically different, in addition to improved device performance. Moreover, realization of SLDs from this device structure demonstrated extra-ordinary emission bandwidth covering the entire international telecommunication union (O- to U-) bands. This accomplishment is a collective emission from quantum wells and quantum dashes of the device active region. All these results lead to a step forward in the eventual realization of more than 150 nm lasing bandwidth from a single semiconductor laser diode.
155

The application of Trefftz-FLAME to electromagnetic wave problems /

Pinheiro, Helder Fleury, 1967- January 2008 (has links)
Numerical analysis of the electromagnetic fields in large, complex structures is very challenging due to the high computational overhead. Recently, it has been shown that a new method called Trefftz-FLAME ( Flexible Local Approximation MEthod) is suitable for problems where there exist a large number of similar structures. / This thesis develops Trefftz-FLAME in two areas. First, a novel 2D Trefftz-FLAME method incorporates the modal analysis and port boundary condition that are essential to an accurate calculation of reflection and transmission coefficients for photonic crystal devices. The new technique outperforms existing methods in both accuracy and computational cost. / The second area pertains to the 3D, vector problem of electromagnetic wave scattering by aggregates of identical dielectric particles. A methodology for the development of local basis functions is introduced, applicable to particles of any shape and composition. Boundary conditions on the surface of the finite FLAME domain are described, capable of representing the incident wave and absorbing the outgoing radiation. A series of problems involving dielectric spheres is solved to validate the new method. Comparison with exact solutions is possible in some cases and shows that the method is able to produce accurate near-field results even when the computational grid spacing is equal to the radius of the spheres.
156

Optoelectronic device technology policy in the US and Japan

Seidenberg, Philip Nelson 05 1900 (has links)
No description available.
157

Reprogrammable optical phase array

Mony, Madeleine. January 2007 (has links)
The evolving needs of network carriers are changing the design of optical networks. In order to reduce cost, latency, and power consumption, electrical switches are being replaced with optical switching fabrics at the core of the networks. An example of such a network is an Agile All-Photonic Network (AAPN). / This thesis presents a novel device that was designed to operate as an optical switch within the context of an AAPN network. The device is a Reprogrammable Optical Phase Array (ROPA), and the design consists of applying multiple electric fields of different magnitudes across an electro-optic material in order to create a diffractive optical element. The configuration of the electric fields can change to modify the properties of the diffractive device. / Such a device has a wide range of potential applications, and two different ROPA designs are presented. Both designs are optimized to function as 1xN optical switches. The switches are wavelength tunable and have switching times on the order of microseconds. The ROPA devices consist of two parts: a bulk electro-optic crystal, and a high-voltage CMOS chip for the electrical control of the device. The design, simulation, fabrication and testing of both the electrical and optical components of the devices are presented.
158

CMOS differential analog optical receivers with hybrid integrated I-MSM detector

Chang, Jae Joon 08 1900 (has links)
No description available.
159

Analysis, design, and testing of semiconductor intersubband devices

Imam, Neena 12 1900 (has links)
No description available.
160

Enhancing the Photovoltaic Performance of P3HT/PDIB Silsesquioxane Donor-Acceptor System Using Spray Deposition Fabrication Technique

Manda, Venkata Ramana 01 May 2014 (has links)
In the past few years, the solution-processed organic based solar cells gained more importance by meeting the demands for cost effective photovoltaic devices. To date, the focus of the organic photovoltaic devices has been on the optimization of the processing the materials to improve photo conversion efficiency and also by modifying the active components of the organic materials. Recently, it has been recognized that the deposition techniques also plays a major role in enhancing the power conversion efficiencies. Currently, though the most common deposition technique for organic solar cells is spin coating, which does not allow scaling up of the large device area. As an alternative method, a simple airbrush spray deposition technique has been developed to fabricate the test devices. The film thickness of the layers was characterized under scanning electron microscope. Devices with different thickness (1000 nm, 500 nm, 240 nm) of poly(3,4-ethylenedioxythipohene) polystyrene sulfonate (PEDOT.PSS) and active layers are prepared and their photovoltaic performances have been evaluated and compared by plotting the IV curves with respect to each thickness. Maintaining the distance between the substrate and the airbrush nozzle the thickness of the layers was controlled. From the results, we found that the test devices with 500 nm thickness of PEDOT.PSS and active layers shows the best device performance with highest current density of 3.97 mA/cm2, open circuit voltage of 1.3 V and power conversion efficiency of 2.34%. As a control experiment, devices were also developed using the standard poly(3- hexylthiophene-2,5-diyl):phenyl-C61-butyric acid methyl ester (P3HT:PCBM) system, but the power conversion efficiencies of these devices were not promising with respect to the literature results. Future studies of this project will focus on improving the power conversion efficiency of poly(3-hexylthiophene-2,5-diyl)/perylenediimide bridged system (P3HT/PDIB) by developing a new device architecture called “tandem solar cells” which consists of multiple layers of different donor and acceptor blends with inorganic transition metal oxides such as zinc oxide and molybdenum oxides.

Page generated in 0.4239 seconds