• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 4
  • 1
  • Tagged with
  • 14
  • 7
  • 7
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Optical trapping and manipulation of chiral microspheres controlled by the photon helicity / Le piégeage et la manipulation optique de microsphères chiraux contrôlées par l'hélicité du photon

Tkachenko, Georgiy 04 September 2014 (has links)
Exploiter le degré de liberté angulaire de la lumière pour contrôler les forces optiques ouvre une nouvelle voie pour la manipulation optique de systèmes matériels. Dans ce contexte, notre travail porte sur l’interaction lumière-matière en présence de chiralité, qu’elle soit matérielle ou ondulatoire. Expérimentalement, nous avons utilisé des gouttes de cristaux liquides cholestériques interagissant avec un ou plusieurs champs lumineux polarisés circulairement et nous avons apporté une description quantitative de nos observations. Notre principal résultat correspond à la démonstration que la pression de radiation optique peut être contrôlée par l’hélicité du photon. Ce phénomène est ensuite utilisé, d’une part pour faire une démonstration de principe du tri de la chiralité matérielle via une approche optofluidique et d’autre part pour réaliser un piège optique tridimensionnel sensible à la chiralité de l’objet piégé. / Exploiting the angular momentum degree of freedom of light to control the mechanical effects that result from light-matter exchanges of linear momentum is an intriguing challenge that may open new routes towards enhanced optical manipulation of material systems. In this context, our work addresses the interplay between the chirality of matter and the chirality of optical fields. Experimentally, this is done by using cholesteric liquid crystal droplets interacting with circularly polarized light and we provide with theoretical developments to quantitatively support our observations. Our main result is the demonstration of optical radiation force controlled by the photon helicity. This phenomenon is then used to demonstrate the optofluidic sorting of material chirality and the helicity-dependent three-dimensional optical trapping of chiral liquid crystal microspheres.
12

Écoulements microfluidiques pilotés sans contact par une onde laser

Robert De Saint Vincent, Matthieu 08 October 2010 (has links) (PDF)
L'effet thermocapillaire (ou Marangoni) est la résultante mécanique d'un gradient de tension interfaciale induit par la présence d'un gradient de température sur une interface fluide. Il se manifeste par (i) la migration d'un objet fini (goutte, bulle) immergé, et (ii) une déflexion de l'interface. Sa nature interfaciale le rend particulièrement pertinent à petite échelle, notamment en microfluidique diphasique. Ce travail de thèse montre comment un effet thermocapillaire induit localement par chauffage laser peut être utilisé pour produire des composants optofluidiques élémentaires (vanne, aiguillage, échantillonneur), et en présente une étude quantitative. La déstabilisation d'un jet microfluidique forcée par laser, conduisant à sa rupture, est également présentée et caractérisée. Cette « boîte à outils » optique fournit ainsi une approche sans contact, pour produire et manipuler des gouttes en microfluidique digitale sans nécessité d'une microfabrication dédiée. Par ailleurs, afin de caractériser sur des temps longs les gouttes produites, et ainsi considérer des populations statistiquement significatives, un dispositif optoélectronique simple pour mesurer les gouttes et leur vitesse en temps réel a également été développé.
13

Écoulements microfluidiques pilotés sans contact par une onde laser

Robert de saint vincent, Matthieu 08 October 2010 (has links)
L’effet thermocapillaire (ou Marangoni) est la résultante mécanique d’un gradient de tensioninterfaciale induit par la présence d’un gradient de température sur une interface fluide. Il semanifeste par (i) la migration d’un objet fini (goutte, bulle) immergé, et (ii) une déflexion del’interface. Sa nature interfaciale le rend particulièrement pertinent à petite échelle, notammenten microfluidique diphasique. Ce travail de thèse montre comment un effet thermocapillaireinduit localement par chauffage laser peut être utilisé pour produire des composants optofluidiquesélémentaires (vanne, aiguillage, échantillonneur), et en présente une étude quantitative.La déstabilisation d’un jet microfluidique forcée par laser, conduisant à sa rupture, est égalementprésentée et caractérisée. Cette « boîte à outils » optique fournit ainsi une approche sans contact,pour produire et manipuler des gouttes en microfluidique digitale sans nécessité d’une microfabricationdédiée. Par ailleurs, afin de caractériser sur des temps longs les gouttes produites,et ainsi considérer des populations statistiquement significatives, un dispositif optoélectroniquesimple pour mesurer les gouttes et leur vitesse en temps réel a également été développé. / The thermocapillary (or Marangoni) effect is the mechanical result of an interfacial tension gradientinduced by a temperature gradient on a fluid interface. This effect manifests itself byinducing (i) the migration of an immersed finite-size object (droplet, bubble), and (ii) a deflexionof the interface. Due to its interfacial nature, the Marangoni effect is particularly relevantat small length scales, especially in the context of two-phase microfluidics. This thesis aims atapplying the thermocapillary effect locally induced by laser heating, in order to create some basicoptofluidic actuators (valve, switch, sampler). A quantitative study of these actuators is presented.The laser-forced destabilization of a co-flowing microfluidic jet, leading to its breakup,is also investigated. This “optical toolbox” represents a non-contacting, and microfabricationfreeapproach for the production and handling of droplets in digital microfluidics. Moreover, tocharacterize these droplet over long times, thus considering statistically significant populations,a simple optoelectronic device has been developed for measuring the size and velocity of thedroplets in real time.
14

Optofluidique : études expérimentales, théoriques et de modélisation / Optofluidics : experimental, theoretical studies and modeling

Ali Aboulela Gaber, Noha 11 September 2014 (has links)
Ce travail porte sur l'étude de propriétés optiques des fluides à échelle micrométrique. A cet effet, nous avons conçu, réalisé et étudié différents types de micro-résonateurs optofluidiques, sous forme de laboratoires sur puce. Notre analyse est fondée sur la modélisation analytique et numérique, ainsi que sur des mesures expérimentales menées sur des micro-cavités optiques; nous utilisons l'une d'entre elles pour des applications de réfractométrie de fluides homogènes et de fluides complexes ainsi que pour la localisation par piégeage optique de microparticules solides. Nous nous sommes d'abord concentrés sur l'étude d'une nouvelle forme de micro-cavité Fabry-Pérot basée sur des miroirs courbes entre lesquels est inséré un tube capillaire permettant la circulation d'une solution liquide. Les résultats expérimentaux ont démontré la capacité de ce dispositif à être utilisé comme réfractomètre avec un seuil de détection de 1,9 × 10-4 RIU pour des liquides homogènes. De plus, pour un liquide contenant des particules solides, la capacité de contrôler la position des microparticules, par des effets de piégeage optique ou de liaison optique, a été démontrée avec succès. Dans un second temps, un résonateur optique est formé simplement à partir d'une goutte de liquide disposée sur une surface super-hydrophobe. La forme quasi-sphérique résultante est propice à des modes de galerie. Il est démontré que, jusqu'à des tailles de gouttelettes millimétriques, la technique de couplage en espace libre est toujours en mesure d'accéder à ces modes à très faible queue évanescente d'interaction, contrairement à ce qu'indiquait jusqu'ici la littérature. De tels résonateurs optofluidiques à gouttelette devraient trouver leur application notamment comme capteur d'environnement de l'air ambiant ou encore comme incubateur de micro-organismes vivants pouvant être suivis par voie optique / This work focuses on the study of optical properties of fluids at the micrometer scale. To this end, we designed, implemented and studied different types of optofluidic micro- resonators in the Lab-on-Chip format. Our analysis is based on analytical and numerical modeling, as well as experimental measurements conducted on optical microcavities; we use one of them for refractometry applications on homogeneous fluids and on complex fluids, as well as for the localization of solid microparticles by optical trapping. We first focused on the study of a new form of Fabry-Perot micro-cavity based on curved mirrors between which a capillary tube is inserted for injecting a fluidic solution. Experimental results demonstrated the ability of this device to be used as a refractometer with a detection limit of 1.9 × 10-4 RIU for homogeneous liquids. Furthermore, for liquid containing solid particles, the ability to control the microparticles position either by optical trapping or optical binding effects has been successfully demonstrated. In a second step, an optical resonator is simply formed from a liquid droplet placed on top of a superhydrophobe surface. The resulting quasi-spherical shape supports resonant whispering gallery modes. It is shown that, up to millimeter size droplets, the proposed technique of free-space coupling of light is still able to access these modes with very low evanescent tail interaction, contrary to what was indicated in the literature so far. Such optofluidic droplet resonators are expected to find their applications for environmental air quality monitoring, as well as for incubator of living micro-organisms that can be monitored optically

Page generated in 0.0256 seconds