• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 90
  • 21
  • 15
  • 7
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 162
  • 29
  • 27
  • 24
  • 24
  • 23
  • 20
  • 18
  • 18
  • 17
  • 16
  • 14
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

The role of the amygdala in non-homeostatic eating

Pena, Francisco Xavier January 2022 (has links)
The motivation to eat is influenced by both internal physiological demands and by external stimuli with positive or negative associations. A conditioned stimulus (CS) associated with food can potentiate eating in sated subjects, whereas a CS associated with a negative affect can suppress eating in hungry subjects. Although the amygdala has been implicated in these behaviors, the neural mechanisms that underlie this type of non-homeostatic eating are poorly understood. To investigate the role of BLA neurons in CS+ potentiated eating and CS- lick suppression, we developed a behavioral paradigm in mice in which eating behavior could be assessed in conditions of low or high satiety and in relation to CS presentations while recording neural activity using freely-moving endoscopic calcium imaging. We found that satiety partially decreases responses to the CS+, and the neural representation of the CS+ becomes more similar to the CS-. Additionally, we tested the hypothesis that CS-evoked activity is casually involved in CS+ induced licking or CS- lick suppression by using optogenetics during this task. Silencing of BLA glutamatergic neurons labelled by NL189 prevents CS- lick suppression during low satiety and does not affect licking during the CS+. The combination of cellular imaging and optogenetics results indicates that BLA neuronal activity evoked by the CS- is critical for lick suppression, whereas CS+ activity might facilitate appetitive behavior, but this activity is not critical for cue-induced eating.
82

Serotonin Input to the Medial Prefrontal Cortex Promotes Behavioral Flexibility

Morgan, Ashlea Ariel January 2022 (has links)
In this study, I investigate how serotonergic modulation of the medial prefrontal cortex (mPFC) affects neuronal activity and impacts cognitive flexibility, anxiety, and fear extinction (Figure 1). I begin in Chapter 1 with general information on the PFC with a focus on the mPFC, then discuss the role and complexity of serotonin and how manipulation of serotonin affects behavior. I, finally, introduce what is understood about how serotonin modulates the mPFC, the significance of which has implications for cognitive and emotional behaviors. In Chapter 2, I studied the role of serotonin in cognitive flexibility. Specifically, I used retrograde tracing to determine the origin of mPFC and assessed how terminal release of 5-HT affects mPFC pyramidal neuron activity using whole-cell electrophysiology in acute brain slices. Furthermore, through in vivo fiber photometry, I evaluated the activity of 5-HTergic neurons projecting to the mPFC during cognitive flexibility behavior. Lastly, by selectively increasing or decreasing mPFC 5-HTergic terminal release through in vivo optogenetics, I assessed the modulatory role of 5-HTergic input into the mPFC on intradimensional rule reversal and extradimensional rule shift performance in the cognitive flexibility task. Furthermore, I evaluated the activity of 5-HTergic neurons projecting to the mPFC during an open field task using in vivo fiber photometry and, in Chapter 3, used in vivo optogenetics to determine the role 5-HT in the mPFC plays in modulating fear-related behavior. In Chapter 4, I examined a pharmacological screen of a psychedelic drug in the cognitive flexibility task outlined in Chapter 2. I conclude in Chapter 5 with a discussion of the study implications and future directions.
83

Implantable Optoelectronics for Neural Interfaces

Pollmann, Eric Hiroshi January 2023 (has links)
In neuroscience, optical techniques have become the leading method over electrophysiological techniques because of their ability to target defined populations upon tagging both for in vivo recordings using genetically encoded calcium or voltage indicators and stimulation using optogenetic opsins at the single neuronal level. Additionally, optical imaging has a smaller tissue displacement factor, the ratio of displaced neuronal tissue to field of view (FoV), thus accelerating the ability to simultaneously record from a larger volumes of neurons whereas electrophysiology arrays are limited in the total number of recordable neurons by the amount of sustained tissue damage. Conventional optical approaches, however, typically rely on microscopy techniques which require the subject to be head-fixed thus limiting the applicability especially at the chronic setting, raising the need for fully implantable optical interfaces. As a result, multiple lens-based miniature microscopes have been developed in academia and industry. Nevertheless, a truly implantable optical neurotechnology has remained intractable because traditional miniaturized fluorescence microscopes require an opening in the dura and skull that matches or exceeds the FoV and chronically extends outside the skull, resulting in a poor overall displacement factor. To overcome these limitations, I developed and characterized various implantable optoelectronic platforms designed to optically record from large neuronal FoVs in a minimally invasive implantable form factor. These works culminated in the SCOPe (Subdural CMOS Optical Probe) platform which was validated in multiple in vivo demonstrations involving mouse and nonhuman primate.
84

On the calcium conductance of channelrhodopsins / Über die Kalziumleitfähigkeit von Kanalrhodopsinen

Fernandez Lahore, Rodrigo Gaston 08 August 2023 (has links)
Kanalrhodopsine (ChRs) sind eine Gruppe von lichtgesteuerten Ionenkanälen, die ursprünglich aus motilen Algen stammen. In ihren nativen Organismus vermitteln sie die Bewegung zu optimalen Lichtbedingungen. In der biologischen Forschung hingegen werden ChRs eingesetzt, um die Erregbarkeit spezifischer Zellen mit hoher räumlicher und zeitlicher Auflösung optisch zu steuern, ein Forschungsfeld, was als Optogenetik bezeichnet wird. Es wurden zahlreiche ChRs mit unterschiedlichen Eigenschaften charakterisiert und entwickelt, darunter solche, die selektiv für H+, Na+, K+ und Anionen sind. Im Gegensatz dazu sind bisher keine Ca2+-selektiven ChRs bekannt. In Anbetracht der Dominanz der von Kalzium in zellulären Signalwegen in allen Reichen des Lebens, würde ein Ca2+-leitendes ChR präzise Photokontrolle einer Vielzahl von zellulären Prozessen ermöglichen. In dieser Arbeit wurden Chlamydomonas reinhardtii channelrhodopsin 2 (CrChR2) Mutanten, die mit einer Erhöhung der Ca2+-Leitfähigkeit einhergehen, elektrophysiologisch charakterisiert und systematisch verglichen. Von den getesteten Varianten zeigten diejenigen, die eine Erhöhung der negativen Ladung am Selektivitätsfilter des Kanals, dem zentralen Tor, verursachen, erhebliche Auswirkungen auf die Leitfähigkeit für Ca2+ bei negativen Membranspannungen. Daraufhin wurden gezielt homologe Mutationen an mehreren verwandten ChRs eingeführt wodurch erfolgreich zwei Kalzium-durchlässige Kanalrhodopsine (CapChR1 und 2) erzeugt werden konnten. Die erweiterte Charakterisierung der CapChRs ergab eine unterdrückte Na+-Leitfähigkeit und eine erhöhte Ca2+-Durchlässigkeit bei negativen Spannungen. Bei niedrigen extrazellulären Konzentrationen des zweiwertigen Kations zeigten Kalzium-Imaging Experimente die Überlegenheit von CapChR2 bei der Vermittlung des durch Licht ausgelösten Ca2+-Einstroms in kultivierten Zellen. / Channelrhodopsins (ChRs) constitute a group of light-gated ion channels originating from motile algae. In their native organisms, they mediate movement towards optimal light conditions. In biological research, ChRs are employed to optically control excitability of specific cells with a high spatiotemporal resolution in a field commonly referred to as optogenetics. Numerous ChRs with varying properties have been characterized and engineered, including members that are selective for H+, Na+, K+ or anions. In contrast, no Ca2+-selective ChRs have been reported to date. Given the dominance of calcium signaling across the kingdoms of life, a Ca2+-conducting ChRs would enable precise photocontrol of a multitude of cellular processes. In this work, mutants of Chlamydomonas reinhardtii channelrhodopsin 2 (CrChR2) associated with an increase in Ca2+-conductance were characterized via electrophysiology and compared systematically. Out of the tested variants, those increasing the negative electric charge at the selectivity filter of the channel, the central gate, were found to have substantial effects on the conductance for Ca2+ at negative membrane voltages. Subsequently, targeted mutations on several related ChRs were introduced in order to produce two calcium-permeable channelrhodopsins (CapChR1 and 2). Extended characterization of the engineered CapChRs revealed suppressed Na+ conductance and increased Ca2+ permeation at negative voltages. At low extracellular concentrations of the divalent cation, calcium imaging experiments demonstrated the superiority of CapChR2 in mediating light-triggered Ca2+-influx in cultured cells.
85

Development of functional cellomics for comprehensive analysis of the relationship between neural networks and behavior in Caenorhabditis elegans / 線虫の神経ネットワークと行動の連関を網羅的に解析するためのファンクショナルセロミクス法の開発

Yamauchi, Yuji 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(農学) / 甲第24669号 / 農博第2552号 / 新制||農||1099(附属図書館) / 学位論文||R5||N5450(農学部図書室) / 京都大学大学院農学研究科応用生命科学専攻 / (主査)教授 菅瀬 謙治, 教授 小川 順, 教授 森 直樹 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
86

Autonomic remodeling and modulation as mechanism and therapy for spontaneous sudden cardiac death

Crocker, Jeffrey January 2022 (has links)
No description available.
87

Energy Efficient Neural Stimulation

Foutz, Thomas J. 30 August 2011 (has links)
No description available.
88

An Optogenetic Approach to Induce Seizure Suppression

Ladas, Thomas P. 21 February 2014 (has links)
No description available.
89

Multifunctional Polymer Fiber Probes for Biomedical Application

Kim, Jongwoon 17 June 2024 (has links)
Biomedical devices play a crucial role in the healthcare system, enabling more effective treatments, less invasive procedures, and more precise diagnoses. Due to these compelling reasons, development of new biomedical devices and biomaterials have always been in high demand. Exploring and refining fabrication methods are essential to the development of new biomedical devices. Some of the common fabrication methods include microfabrication methods (photolithography and soft lithography), 3D printing (additive manufacturing), laser machining, thermal drawing, and electrospinning. The choice of fabrication methods heavily depends on the materials, geometry, and functionalities of biomedical devices. Currently, the thermal drawing process has proven to be an excellent scalable fabrication platform for neural interface, tissue engineering, tumor/cancer treatment, soft robotics, and smart textiles. This Ph.D. dissertation summarizes my research on the fabrication and validation of thermally drawn multifunctional polymer fiber probes for modern biomedical applications, primarily in the fields of neural interfaces and tumor treatments. Understanding the neural basis of behavior requires monitoring and manipulating combinations of physiological elements and their interactions in behaving animals. Utilizing the thermal drawing process, we developed T-DOpE (Tapered Drug delivery, Optical stimulation, and Electrophysiology) probes and Tetro-DOpE (Tetrode-like Drug delivery, Optical stimulation, and Electrophysiology) probes that can simultaneously record and manipulate neural activity in behaving rodents. Taking advantage of the triple-functionality, we monitored local field potential (LFP) while manipulating cannabinoid receptors (CB1R; microfluidic agonist delivery) and CA1 neuronal activity using optogenetics. Focal infusion of CB1R agonist downregulated theta and sharp wave-ripple oscillations (SPW-Rs). Furthermore, we found that CB1R activation reduces sharp wave-ripples by impairing the innate SPW-R-generating ability of the CA1 circuit. Microscale electroporation devices are mostly restricted to in vitro experiments (i.e., microchannel and microcapillary). We developed a flexible microscale electroporation fiber probe through a thermal drawing process and femtosecond laser micromachining techniques. The novel fiber microprobes enable microscale electroporation and arbitrarily select the cell groups of interest to electroporate. Successful reversible and irreversible microscale electroporation was observed in a 3D collagen scaffold (seeded with U251 human glioma cells) using fluorescent staining. Leveraging the scalable thermal drawing process, we envision a wide distribution of multifunctional polymer fiber probes in research facilities and hospitals. Along with the fiber probes presented in this dissertation, additional insight and future perspective on thermally drawn biomedical devices are discussed. / Doctor of Philosophy / The thermal drawing process is a versatile and scalable platform for fabricating functional fiber technology. The process was formerly adapted from fabrication method for silica optical fibers, widely used in telecommunication (e.g., telephone, internet, cable TV, etc.). To name some functionalities of these fibers, they can move, hear, sense touch, change colors, harvest and store energy, record and manipulate brain activity, and ablate tumors. As imagined, these functionalities are derived from the unique geometry and functional materials embedded along the fiber. Therefore, developing the fiber design tailored to a specific application is a critical step to making a successful fiber product. In this dissertation, I will present my work on biomedical devices fabricated with the thermal drawing process and their application in neuroscience and tumor/cancer treatment. Utilizing the thermal drawing process, we developed neural interfaces that can be implanted into the deep brain and record and simultaneously manipulate the neural activity. These neural interfaces (Chapter 2,3; T-DOpE and Tetro-DOpE probes, respectively) are able to record both local field potentials (LFP; activity of thousands or more neurons) and single action potentials (single on/off signal from individual neurons nearby). By manipulating the gene expression, we can control the activity of neurons with specific light (λ= 470nm; blue light) exposure. We implemented optical waveguide in our probes to guide light from a laser source to the tip of the probe and manipulate the neural activity. Furthermore, we fabricated micro-channels within the device to enable focal drug delivery at the tip of the device. Using the T-DOpE probe, we studied the effect of local synthetic cannabinoid injection in the hippocampus. We found that the local injection of the drug in hippocampus CA1 makes neurons incapable of generating sharp wave-ripples (a neural signal associated with memory). Electroporation is a biophysical phenomenon where short high electric field pulses introduce nanoscale defects in cell membrane. These defects can cause unstable cellular homeostasis and eventually leads to cell death. Due to reduced treatment time, no heat effect, and tissue selectivity, electroporation has been used in clinical trials for cancer treatments. Using the thermal drawing process and laser micromachining techniques, we developed a flexible microscale electroporation fiber probe capable of ablating tumor cells. Due to the low-cost and scalability of thermal drawing process, we envision the use of thermally drawn functional fiber technology in biomedical fields. In this dissertation, I also address some challenges and future directions of thermally drawn functional fibers in biomedical fields.
90

Optogenetic stimulation of the cochlea

López de la Morena, David 18 December 2018 (has links)
No description available.

Page generated in 0.0662 seconds