• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 89
  • 21
  • 15
  • 7
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 160
  • 28
  • 27
  • 24
  • 23
  • 22
  • 20
  • 18
  • 18
  • 17
  • 16
  • 14
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Mechanismus und anwendungsbezogene Optimierung von Channelrhodopsin-2

Berndt, André 27 July 2011 (has links)
Channelrhodopsin-2 ist ein lichtaktivierter Kationenkanal, der zur nichtinvasiven Steuerung neuronaler Aktivität verwendet wird. Einige grundlegende Eigenschaften dieses Proteins sind bereits bekannt, aber die molekularen Mechanismen des Ionentransports und der Aktivierung liegen noch weitgehend im Dunkeln. Ziel dieser Studie war es, anhand von Mutationsstudien die Funktion einzelner Aminosäuren zu bestimmen. Dazu habe ich gezielt potentiell wichtige Reste substituiert und die Channelrhodopsin-2-Varianten elektrophysiologisch untersucht. Um die aufgetretenen Änderungen beim Ionentransport und den Kanalkinetiken zu erklären, habe ich verschiedene mathematische Modelle an die experimentellen Daten angepasst. Dabei stellte sich heraus, dass die Reste H134 und E90 Schlüsselpositionen für den Protonentransport sind. Außerdem haben auch die Reste E235 und D253 einen großen Einfluss auf den Ladungstransport. Dagegen wird die Kanalöffnung von C128 und D156 kontrolliert. Des Weiteren kontrolliert E123 die Übergänge zwischen leitenden und nichtleitenden Zuständen von Channelrhodopsin-2. Aus der zielgerichteten Mutation von Aminosäuren resultierten Varianten, die langsamere oder schnellere Kinetiken hatten oder eine bessere Expression zeigten als der Wildtyp. Das Anwendungspotential der modifizierten Kanäle wurde in Kooperationen mit neurophysiologischen Arbeitsgruppen untersucht. Dadurch konnten drei neue Typen von Channelrhodopsinen in die Neurophysiologie eingeführt werden. Die step-functions opsins führen zu einer anhaltenden Membrandepolarisation, die die Erregbarkeit von Neuronen gegenüber synaptischen Inputs erhöht. ChETA erlaubt das zeitlich präzise Auslösen von Aktionspotentialen auch bei sehr hohen Anregungsfrequenzen. T159C und E123T/T159C ermöglichen durch ihre großen Photoströme und optimierten Kinetiken eine hohe Zuverlässigkeit bei der optischen Steuerung neuronaler Aktivität. Dadurch wird das Anwendungsspektrum von Channelrhodopsin-2 erheblich erweitert. / Channelrhodopsin-2 is a light-activated cation channel which has become a very useful tool in neurophysiology, since it allows the noninvasive control of neural activity. Some of the basic features of this channel are known from previous studies, but the molecular mechanisms of ion translocation and activation are largely unknown. The aim of my thesis is to elucidate the function of single amino acids by mutational studies. I replaced potentially important residues and probed the constructs by electrophysiological measurements under various conditions. Additionally, I fitted the experimental data to several mathematical models in order to explain changes in ion permeabilities and channel kinetics and I assigned particular functions to the mutated residues. Apparently, H134 and E90 are key positions for the proton transportation. Mutations at E235 and D253 also strongly influence ion translocation, whereas C128 and D156 obviously control the channel opening. Moreover, I found that E123 is a key element for the channel activation which controls the transitions between conducting and non-conducting states of Channelrhodopsin-2. The genetically modified Channelrhodopsin-2-variants provide several favorable features, such as, a slower or faster channel opening and closing or an optimized expression. Therefore, we tested the potential of promising constructs for applications in collaboration with neurophysiology laboratories. Finally, we introduced three new tools. First, step-function opsins induce a sustained membrane depolarization which sensitizes neurons to native synaptic inputs. Second, the ChETA variant allows the temporally precise generation of action potentials even at high stimulation frequencies. Third, T159C and E123T/T159C provide large photocurrents and optimized kinetics resulting in an improved performance in the noninvasive control of neural activity. In summary, this significantly broadens the range of application for channelrhodopsin-2.
92

Top-down attention: neural pathways in the human and non-human primate examined by electrophysiology, optogenetics and psychophysics

Hüer, Janina 08 February 2018 (has links)
No description available.
93

Contribution de noyaux hypothalamiques et de leur interconnexion à la régulation du sommeil / Contribution of hypothalamic nuclei and their interconnections to sleep regulation

Varin, Christophe 15 April 2016 (has links)
Chez les mammifères, l’alternance des états de vigilance nécessite la mise en jeu de mécanismes spéci ques qui facilitent les transitions entre l’éveil, le sommeil lent (SL) et le sommeil paradoxal (SP). L’objectif de cette thèse s’inscrit dans l’optique de disséquer chez la souris les processus neuronaux contrôlant l’alternance physiologique entre ces trois états de vigilance. Au cours de cette thèse, nous avons tout d’abord démontré par des approches complémentaires ex vivo et in vivo que le glucose peut favoriser l’endormissement par son action excitatrice directe sur les neurones promoteurs du SL localisés dans l’aire préoptique ventrolatérale (VLPO). Nous avons ensuite, par deux approches méthodologiques di érentes et complémentaires, contribué à préciser le rôle physiologique des neurones exprimant l’hormone de mélano-concentration (MCH) dans la régulation du cycle veille-sommeil, démontrant ainsi qu’en plus de faciliter le déclenchement et le maintien du SP lorsqu’ils sont activés, ils contrôlent certains aspects du SL en favorisant, au cours SL, un SL plus profond ainsi que la terminaison des épisodes de SL. Forts de ces nouveaux résultats supportant une contribution des neurones MCH à la régulation du SL, nous avons déterminé une voie potentielle pouvant sous-tendre cette fonction physiologique à travers leurs projections efférentes sur le VLPO. Nos résultats préliminaires indiquent que la stimulation optogénétique des axones des neurones MCH dans le VLPO favorise le déclenchement d’un état de transition entre SL et SP sans pour autant conduire au SP / In mammals, alternating between vigilance states requires some speci c processes that facilitate transitions between wake, Slow-Wave Sleep (SWS), and Paradoxical Sleep (PS). The objective of this thesis was to decipher, in mice, the neuronal mechanisms that control the alternation between these three vigilance states. During thus thesis, we first demonstrated using complementary ex vivo and in vivo approaches that glucose can facilitate sleep induction by directly exciting sleep- promoting neurons located within the ventrolateral preoptic nucleus (VLPO). Then, by developing two different and complementary approaches, we contributed to clarify the physiological role of melanin-concentrating hormone (MCH)-expressing neurons in sleep-wake regulation. Indeed, in addition to their PS-promoting effect when activated, we found that MCH neurons also contribute to the regulation of some aspects of SWS regulation by favouring the appearance of a deeper SWS and facilitating SWS episodes termination. These new results supporting a role of MCH neurons to SWS regulation led us to investigate a putative pathway underlying such an effect through efferent projections from MCH neurons to the VLPO. Preliminary results suggest that the optogenetic stimulation of axons from MCH neurons within the VLPO could facilitate the appearance of a transition state between SWS and PS without triggering PS onset
94

Caractérisation anatomo-fonctionnelle du faisceau cortico-subthalamique moteur chez le primate non humain : étude par optogénétique, électrophysiologie, histologie-3D, et tractographie. Implications pour les stratégies de neuromodulation dans le traitement de la maladie de Parkinson / Anatomo-functional characterization of the motor corticosubthalamic pathway of the non human primate : study by optogenetics, electrophysiology, 3D-histology and tractography. Implications for neuromodulation strategies for the treatment of Parkinson's disease

Senova, Yann Suhan 14 December 2015 (has links)
La maladie de Parkinson (MP) est la seconde maladie neurodégénérative la plus répandue. Les symptômes moteurs répondent initialement bien aux médicaments dopaminergiques. Toutefois, des complications motrices de ces médicaments finissent par survenir. Certains patients se voient alors proposer un traitement neurochirurgical par stimulation cérébrale profonde (SCP) et chronique du Noyau Subthalamique (NST). Plusieurs études suggèrent que la modulation du faisceau cortico-subthalamique moteur explique au moins en partie l’efficacité de la SCP du NST. Approfondir la compréhension du mécanisme d’action de la SCP du NST pour le traitement de la MP devrait permettre d’optimiser le rapport innocuité/efficacité de cette procédure qui s’adresse à des dizaines de milliers de patients dans le monde. L’objectif primaire de cette thèse est de caractériser le faisceau cortico-subthalamique moteur sur les plans anatomique et fonctionnel chez le primate non humain. Les objectifs secondaires sont : Permettre la visualisation directe et en conditions stéréotaxiques du NST chez le primate non humain et le patient parkinsonien - Mettre au point une méthodologie permettant de caractériser sur les plans anatomique et fonctionnel tout faisceau de fibres entre deux régions cérébrales anatomiquement distinctes, chez le primate non humain - Elaborer une loi de commande pour la stimulation du NST par optogénétique et en boucle fermée, afin de détruire sélectivement les oscillations béta et tester l’hypothèse de leur rôle dans l’émergence des symptômes moteurs de la MP... / Parkinson’s Disease (PD) is the second most widespread neurodegenerative disease. Motor symptoms initially respond well to dopaminergic medecines ; however, motor complications will eventually occur. Some patients are then proposed a neurosurgical treatment by chronical electrical deep brain stimulation (DBS) of the subthalamic nucleus (STN). Several studies suggested that the modulation of the motor cortico-subthalamic bundle might explain the efficacy of STN DBS, at least to a certain extent. A better understanding of the mechanism of action of DBS of the STN in order to treat PD should help to optimize the safety/efficacy of this surgical procedure from which tens of thousands of patients could benefit all over the world.The main purpose of the present thesis is to characterize, both anatomically and functionally, the motor cortico-subthalamic bundle in non-human primates. Secundary objectives are : (1) to allow the direct visualization, under stereotactic conditions, of the STN of non-human primates and of patients with PD ; (2) to develop a methodology enabling to characterize, both anatomically and functionally, any fiber bundle between two anatomically distinct cerebral areas, in non-human primates ; (3) to establish a command law for closed-loop stimulation of STN by optogenetics, in order to selectively destroy beta-oscillations and assess the hypothesis of their role in the occurrence of motor symptoms in PD...
95

Traitement des informations thalamiques au travers des ganglions de la base : approche électrophysiologique et optogénétique in vivo / Treatment of thalamic information through the basal ganglia : combining electrophysiology and optogenetics in vivo

Hanini-Daoud, Maroua 16 December 2016 (has links)
Le centre médian/parafasciculaire (CM/Pf) du thalamus a récemment émergé comme un élément d'intérêt dans le contexte de la maladie de Parkinson. Ainsi le fonctionnement normal et pathologique des GB ne peut pas être pleinement élucidé sans qu'il ne soit pris en considération. Dans ce contexte, nous avons analysé le transfert des informations thalamiques dans les GB en enregistrant, in vivo, les réponses évoquées au niveau de la structure de sortie des GB, la substantce noire pars reticulata (SNr) soit par la stimulation électrique ou optogénétique du CM/Pf. Ensuite, nous avons étudié les composantes des GB impliquées dans ces réponses en analysant les réponses évoquées par l'activation optogenetique spécifique des voies thalamo-striée, thalamo-subthalamique ou thalamo-nigrale. À la fois l'activation électrique et optogenetique du CM/Pf évoquent des réponses complexes dans la SNr qui sont composées d'une inhibition qui peut être précédée et/ou suivie d'excitations. L'inhibition et l'excitation tardive dépendent de l'activation des voies trans-striatales, alors que les premières excitations mettent en jeu les voies thalamo-subthalamique et thalamo-nigrale. Nous avons également étudié l'impact des interneurones cholinergiques du striatum ainsi que les afférences dopaminergiques sur le transfert des informations thalamiques dans les GB. Pour ce faire, nous avons enregistré les réponses évoquées au niveau des neurones de projection du striatum suite à la stimulation électrique du CM/Pf avec ou sans l'inhibition optogénétique des CINs. Nous serons alors en mesure de déterminer comment les CINs sont impliqués dans le transfert des informations thalamiques au sein des GB. / The centre median/parafascicular (CM/Pf) of the thalamus has recently emerged as a component of interest in the context of Parkinson’s disease. Thus normal and pathological dynamics of BG cannot be fully understood unless it is taken into account. Here, we analyzed the transfer of CM/Pf information through BG by recording, in vivo, the evoked responses of BG output neurons in the substantia nigra pars reticulata (SNr) to either electrical or optogenetic CM/Pf stimulations. Then, we investigated the BG components involved in these responses by analyzing the responses evoked by specific optogenetic activation of the thalamo-striatal, thalamo-subthalamic or thalamo-nigral pathways. Both electrical and optogenetic activation of CM/Pf evoke complex responses in SNr that are composed of an inhibition that can be preceded and/or followed by excitations. The inhibition and the late excitation rely on the activation of the trans-striatal pathways, whereas the early excitations involve thalamo-subthalamic and thalamo-nigral projections. We are currently analyzing whether and how the striatal cholinergic interneurons (CINs) and the dopaminergic afferent system modulate the transfer of thalamic information within the BG. For the second part of my project, we analyzed the treatment of thalamic information from CM/Pf at the level of the striatum. To do this, we recorded the evoked responses of striatal projection neurons by the electrical stimulation of the CM/Pf with or without the inhibition of the CINs by optogenetics. We will then be able to determine how CINs are involved in the transfer of thalamic information at the level of the striatum.
96

Development of Protein-based Tools to Image and Modulate Ca2+ Signaling

Pham, Elizabeth 11 January 2012 (has links)
Optogenetics has emerged as a branch of biotechnology that combines genetic engineering with optics to observe intracellular changes as well as control cellular function. Despite recent progress, there still remains the need for an optogenetic tool that can specifically control Ca2+. Such a tool would greatly facilitate the study of highly Ca2+-dependent cellular processes that are regulated both spatially and temporally. Ca2+ signaling regulates many cellular processes in both healthy and diseased cells. The ability to modulate the shape, duration, and amplitude of Ca2+ signaling is important for elucidating mechanisms by which endogenous Ca2+ concentrations are maintained. In this thesis, we used optogenetic approaches to explore a number of strategies to control Ca2+ influx through store-operated Ca2+ entry (SOCE) mediated by Stim1 and Orai1. To better study Ca2+ signaling in live cells, protein-based biosensors can be developed to monitor intracellular Ca2+ changes. To aid in this, we developed a computational modeling tool called FPMOD to improve both new and existing biosensor designs. Although FPMOD was initially intended for evaluating biosensor designs, other research groups have since used it to construct models of other proteins to answer questions related to protein conformation. We next studied the modulation of SOCE by using drug-inducible fusion proteins to study the regulation of Stim1 puncta formation. Interestingly, recruiting a Ca2+-buffering protein to Stim1 led to puncta formation, a previously unknown means of inducing puncta. These results suggest Stim1 may additionally be regulated by cytoplasmic Ca2+ levels. Finally, we developed LOVS1K, an optogenetic tool to directly activate Orai1 channels and specifically control Ca2+ influx. Photo-sensitive LOVS1K was used to generate both local Ca2+ influx at the membrane and global cytoplasmic Ca2+ signals. As proof of concept, LOVS1K was further used to modulate engineered Ca2+-dependent proteins. Ca2+ is a remarkably versatile intracellular messenger. The combination of high spatiotemporal control of irradiation and the ability of LOVS1K to generate both local and global Ca2+ changes provides a promising platform to study cellular processes that are highly dependent on different Ca2+ signals. Together, biosensors and engineered Ca2+-modulating tools can be used to study the many different aspects of Ca2+ signaling and controllably manipulate endogenous Ca2+ signaling pathways.
97

Development of Protein-based Tools to Image and Modulate Ca2+ Signaling

Pham, Elizabeth 11 January 2012 (has links)
Optogenetics has emerged as a branch of biotechnology that combines genetic engineering with optics to observe intracellular changes as well as control cellular function. Despite recent progress, there still remains the need for an optogenetic tool that can specifically control Ca2+. Such a tool would greatly facilitate the study of highly Ca2+-dependent cellular processes that are regulated both spatially and temporally. Ca2+ signaling regulates many cellular processes in both healthy and diseased cells. The ability to modulate the shape, duration, and amplitude of Ca2+ signaling is important for elucidating mechanisms by which endogenous Ca2+ concentrations are maintained. In this thesis, we used optogenetic approaches to explore a number of strategies to control Ca2+ influx through store-operated Ca2+ entry (SOCE) mediated by Stim1 and Orai1. To better study Ca2+ signaling in live cells, protein-based biosensors can be developed to monitor intracellular Ca2+ changes. To aid in this, we developed a computational modeling tool called FPMOD to improve both new and existing biosensor designs. Although FPMOD was initially intended for evaluating biosensor designs, other research groups have since used it to construct models of other proteins to answer questions related to protein conformation. We next studied the modulation of SOCE by using drug-inducible fusion proteins to study the regulation of Stim1 puncta formation. Interestingly, recruiting a Ca2+-buffering protein to Stim1 led to puncta formation, a previously unknown means of inducing puncta. These results suggest Stim1 may additionally be regulated by cytoplasmic Ca2+ levels. Finally, we developed LOVS1K, an optogenetic tool to directly activate Orai1 channels and specifically control Ca2+ influx. Photo-sensitive LOVS1K was used to generate both local Ca2+ influx at the membrane and global cytoplasmic Ca2+ signals. As proof of concept, LOVS1K was further used to modulate engineered Ca2+-dependent proteins. Ca2+ is a remarkably versatile intracellular messenger. The combination of high spatiotemporal control of irradiation and the ability of LOVS1K to generate both local and global Ca2+ changes provides a promising platform to study cellular processes that are highly dependent on different Ca2+ signals. Together, biosensors and engineered Ca2+-modulating tools can be used to study the many different aspects of Ca2+ signaling and controllably manipulate endogenous Ca2+ signaling pathways.
98

A power-efficient wireless neural stimulating system with inductive power transmission

Lee, Hyung-Min 08 June 2015 (has links)
The objective of the proposed research is to advance the power efficiency of wireless neural stimulating systems in inductively powered implantable medical devices (IMD). Several innovative system- and circuit-level techniques are proposed towards the development of power-management circuits and wireless neural stimulating systems with inductive power transmission to improve the overall stimulation power efficiency. Neural stimulating IMDs have been proven as effective therapies to alleviate neurological diseases, while requiring high power and performance for more efficacious treatments. Therefore, power-management circuits and neural stimulators in IMDs should have high power efficiencies to operate with smaller received power from a larger distance. Neural stimulating systems are also required to have high stimulation efficacy for activating the target tissue with a minimum amount of energy, while ensuring charge-balanced stimulation. These features provide several advantages such as a long battery life in an external power transmitter, extended-range inductive power transfer, efficacious and safe stimulation, and less tissue damage from overheating. The proposed research presents several approaches to design and implement the power-efficient wireless neural stimulating IMDs: 1) optimized power-management circuits for inductively powered biomedical microsystems, 2) a power-efficient neural stimulating system with adaptive supply control, and 3) a wireless switched-capacitor stimulation (SCS) system, which is a combination structure of the power-management circuits and neural stimulator, to maximize both stimulator efficiency (before electrodes) and stimulus efficacy (after electrodes).
99

Etudes moléculaires du canal potassique sensible a l'ATP : "gating", pathologie et optogénétique / Molecular studies of ATP-sensitive potassium channels : gating, pathology, and optogenetics

Reyes Mejia, Gina Catalina 23 September 2016 (has links)
Les canaux potassiques sensibles à l’ATP (KATP) sont des canaux omniprésents liant excitabilité et énergie cellulaire. Ils fonctionnent en captant le niveau relatif des nucléotides ATP et ADP à l’intérieur des cellules: Les premiers bloquant le canal et les derniers l’activant. De plus le phospholipide phosphatidylinositol4,5-bisphosphate (PIP2) est connu pour être un puissant régulateur des canaux KATP. Ceux-ci sont présents dans la plupart des tissus excitables et sont impliqués dans un grand nombre de fonctions physiologiques. L’objectif de ma thèse consiste à désigner un bloc dépendant de la lumière au niveau de ces KATP, afin de contrôler son activité optiquement tout en gardant ses propriétés natives. Cela a été accompli par la mutation de différents résidus en cystéine. Ce canal KATP complètement dépendant de la lumière, pourrait être utilisé pour réguler les actions de potentiels via la lumière afin de piloter différents aspects d’électrophysiologie cellulaire mais aussi de développer des applications de photo-traitements.J’ai également réalisé la cartographie fonctionnelle des résidus impliqués dans le gating du canal Kir6.2 sous le contrôle de protéines membranaires interagissant avec le domaine N-terminal. Cela a été réalisé par le design d’un canal artificiel Kir6.2 formé par la fusion du C-terminal d’un RCPG avec le N-terminal du canal. Des structures cristallographiques et des caractérisations fonctionnelles des canaux potassiques ont permis de mettre en évidence la présence de deux portes dans les domaines transmembranaires : le filtre de sélectivité et le « gate A » à l’interface cytoplasmique, et le troisième « gate » dans le domaine cytoplasmique du canal Kir connu sous le nom de « G loop gate ». Enfin j’ai caractérisé de mutations dans le gène ABCC9 codant pour SUR2A et associé au syndrome de Cantu (CS). Ces mutations sont localisées dans le domaine transmembranaire 0 (TMD0) de SUR2A, un domaine essentiel dans l’interaction entre Kir6.2 et SUR dans le complexe KATP. Les résultats suggèrent que les deux mutations cause une hyperactivité du canal via 2 mécanismes distincts : (1) Une diminution de la sensibilité de l’ATP affectant la modulation du PIP2, mais qui n’affecte pas l’activation par le Mg-ADP ou (2) aucun effets en réponse à l’ATP ou Mg-ADP, mais une sensibilité accrue au PIP2. Ces découvertes soulignent le rôle essentiel du TMD0 dans la modulation du « gating » de Kir6.2. En particulier, cela démontre qu’il y a un contrôle de la réponse du canal par des effecteurs intracellulaires qui se fixent sur Kir6.2, impliquant des interactions très liées entre Kir6.2 et la région TMD0. / ATP-sensitive K+ (KATP) channels are ubiquitous channels designed to couple excitability to cellular energy. They perform this function by sensing the relative levels of the intracellular nucleotides ATP and ADP; with ATP blocking the channel and ADP activating it. Additionally, the phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) is known to be a strong regulator of KATP channels. These channels are present in many excitable tissues and involved in many physiological functions. The aim of this thesis is to design a light dependent block of the KATP channel, in order to control its activity and have it under optical control while at the same time retaining its native properties. This was accomplished by mutating specific residues to cysteines. This light dependent blocked KATP channel, could be used to regulate action potentials with light to tune diverse aspects of cellular electrophysiology and potentially photo-pharmacology treatment. We also performed a functional mapping of the Kir6.2 channel gate(s) under the control of membrane proteins interacting with the N-terminal domain. This was performed by using a unique artificial gate Kir6.2 channel formed by fusing a GPCR C-terminus to the Kir6.2 N terminus. Crystallographic structures and functional characterizations of potassium channels demonstrated the presence of two gates in the transmembrane domains: the selectivity filter and the "A" gate at the cytoplasmic interface, and a third gate in the cytoplasmic domain of Kir channels known as the G loop gate. Unexpectedly, our results demonstrated that several gates could be involved suggesting a concerted mechanism. Finally, we characterized two single-point mutations in the ABCC9 gene encoding SUR2, that are associated with Cantu syndrome (CS). These mutations are localized in transmembrane domain 0 (TMD0) of SUR2A, an essential domain which mediates the interaction between Kir6.2 and SUR within the K-ATP channel complex. Results suggest that the two mutations cause KATP channel hyperactivity through two divergent mechanisms: (1) a decreased sensitivity to ATP inhibition and affecting the modulation by PIP2, and that does not affect activation by Mg-ADP or (2) any effect on the response to ATP and Mg-ADP, but more sensitive to activation by PIP2. These discoveries underline the essential role of TMD0 in the gating modulation of Kir6.2. They demonstrate in particular that it can control the response of the channel to intracellular effectors that bind to Kir6.2, implying tight interactions between Kir6.2 and the TMD0 region.
100

The reconstitution of visual cortical feature selectivity <i>in vitro</i>

Schottdorf, Manuel 22 August 2017 (has links)
No description available.

Page generated in 0.0603 seconds