Spelling suggestions: "subject:"kanalrhodopsin"" "subject:"kanalrhodopsine""
1 |
On the calcium conductance of channelrhodopsins / Über die Kalziumleitfähigkeit von KanalrhodopsinenFernandez Lahore, Rodrigo Gaston 08 August 2023 (has links)
Kanalrhodopsine (ChRs) sind eine Gruppe von lichtgesteuerten Ionenkanälen, die ursprünglich aus motilen Algen stammen. In ihren nativen Organismus vermitteln sie die Bewegung zu optimalen Lichtbedingungen. In der biologischen Forschung hingegen werden ChRs eingesetzt, um die Erregbarkeit spezifischer Zellen mit hoher räumlicher und zeitlicher Auflösung optisch zu steuern, ein Forschungsfeld, was als Optogenetik bezeichnet wird. Es wurden zahlreiche ChRs mit unterschiedlichen Eigenschaften charakterisiert und entwickelt, darunter solche, die selektiv für H+, Na+, K+ und Anionen sind. Im Gegensatz dazu sind bisher keine Ca2+-selektiven ChRs bekannt. In Anbetracht der Dominanz der von Kalzium in zellulären Signalwegen in allen Reichen des Lebens, würde ein Ca2+-leitendes ChR präzise Photokontrolle einer Vielzahl von zellulären Prozessen ermöglichen.
In dieser Arbeit wurden Chlamydomonas reinhardtii channelrhodopsin 2 (CrChR2) Mutanten, die mit einer Erhöhung der Ca2+-Leitfähigkeit einhergehen, elektrophysiologisch charakterisiert und systematisch verglichen. Von den getesteten Varianten zeigten diejenigen, die eine Erhöhung der negativen Ladung am Selektivitätsfilter des Kanals, dem zentralen Tor, verursachen, erhebliche Auswirkungen auf die Leitfähigkeit für Ca2+ bei negativen Membranspannungen. Daraufhin wurden gezielt homologe Mutationen an mehreren verwandten ChRs eingeführt wodurch erfolgreich zwei Kalzium-durchlässige Kanalrhodopsine (CapChR1 und 2) erzeugt werden konnten. Die erweiterte Charakterisierung der CapChRs ergab eine unterdrückte Na+-Leitfähigkeit und eine erhöhte Ca2+-Durchlässigkeit bei negativen Spannungen. Bei niedrigen extrazellulären Konzentrationen des zweiwertigen Kations zeigten Kalzium-Imaging Experimente die Überlegenheit von CapChR2 bei der Vermittlung des durch Licht ausgelösten Ca2+-Einstroms in kultivierten Zellen. / Channelrhodopsins (ChRs) constitute a group of light-gated ion channels originating from
motile algae. In their native organisms, they mediate movement towards optimal light conditions. In biological research, ChRs are employed to optically control excitability of specific
cells with a high spatiotemporal resolution in a field commonly referred to as optogenetics.
Numerous ChRs with varying properties have been characterized and engineered, including
members that are selective for H+, Na+, K+ or anions. In contrast, no Ca2+-selective ChRs
have been reported to date. Given the dominance of calcium signaling across the kingdoms
of life, a Ca2+-conducting ChRs would enable precise photocontrol of a multitude of cellular
processes.
In this work, mutants of Chlamydomonas reinhardtii channelrhodopsin 2 (CrChR2) associated
with an increase in Ca2+-conductance were characterized via electrophysiology and compared
systematically. Out of the tested variants, those increasing the negative electric charge at
the selectivity filter of the channel, the central gate, were found to have substantial effects
on the conductance for Ca2+ at negative membrane voltages. Subsequently, targeted mutations on several related ChRs were introduced in order to produce two calcium-permeable
channelrhodopsins (CapChR1 and 2). Extended characterization of the engineered CapChRs
revealed suppressed Na+ conductance and increased Ca2+ permeation at negative voltages. At low extracellular concentrations of the divalent cation, calcium imaging experiments demonstrated the superiority of CapChR2 in mediating light-triggered Ca2+-influx in cultured cells.
|
2 |
Development of biophysical test systems for behavioral responses in green algaBaidukova, Olga 13 October 2023 (has links)
Die Grünalge Chlamydomonas reinhardtii ist ein Modellorganismus, der nach der Entdeckung von zwei Photorezeptoren, den Kanalrhodopsinen, eine Schlüsselrolle bei der Entwicklung der Optogenetik spielte. Kanalrhodopsine sind lichtinduzierte Ionenkanäle, die für das photoinduzierte Verhalten von Chlamydomonas verantwortlich sind. Aufgrund der Herausforderungen bei der gentechnischen Modifizierung in diesem Organismus konnte ihre Funktion in Phototaxis und photophober Reaktion bisher nicht umfassend untersucht werden.
In dieser Arbeit präsentiere ich eine CRISPR-Cas9-basierte Technik, die einen zielgerichteten Austausch einzelner Nukleotide in einem ausgewählten Gen in vivo ermöglicht. Hierfür wird gezielt ein DNA-Doppelstrangbruch innerhalb des Gens induziert und anschließend wieder durch Aktivierung des Homologie-gesteuerten Reparaturmechanismus der Alge behoben, bei dem eine ausgewählte Punktmutation integriert wird.
Diese Technik habe ich anschließend verwendet, um die Funktion der Kanalrhodopsine ChR1 und ChR2 in vivo aufzuklären. Dazu habe ich die codierenden Gene jeweils im Chlamydomonas Wildtyp-Stamm ausgeschaltet und Punktmutationen im verbleibenden Kanalrhodopsin eingeführt. Die so erzeugten Kanalmutanten weisen Veränderungen in ihrer Photozykluskinetik und Ionenselektivität auf, die das lichtabhängige Verhalten der Alge beeinflussen sollten.
Die Ergebnisse zeigten zum einen, dass sowohl ChR1 als auch ChR2 Photorezeptoren sind, die die Phototaxis steuern, und zum anderen, dass eine Erhöhung der ChR2-Expression nach Deletion von ChR1 die phototaktische Aktivität der Algen wiederherstellt. Darüber hinaus wiesen die mutierten Chlamydomonas-Stämme mit veränderter Photozykluskinetik und reduzierter Kalzium-Permeabilität eine fast 100-fache Verringerung der Photosensitivität, eine verminderte photophobische Reaktion und schnellere Lichtadaptation auf. Zudem führte die Umkehr der Selektivität vom Channelrhodopsin von Kationen zu Anionen zum kompletten Verlust der Photoreaktion der Algen. Nicht zuletzt konnte diese Studie die Bedeutung der Proton-Leitfähigkeit der Kanalrhodopsine für das photoinduzierte Verhalten von Chlamydomonas aufzeigen. / The green alga Chlamydomonas reinhardtii is a model organism that played a key role in the development of optogenetics, after discovery of two photoreceptors called channelrhodopsins. Channelrhodopsins are light-gated ion channels that are responsible for photo-induced behavior of Chlamydomonas.
Untill now, their functionality in algal photoresponses such as phototaxis and photophobic reaction has not been extensively studied, primarily due to the challenges connected to genetic editing in the organism.
In this work, I presented a CRISPR-Cas9-based technique allowing a targeted exchange of single nucleotides in a gene of interest in vivo. It is based on targeted induction of DNA double-stranded breaks in the gene and on subsequent engagement of homologous recombination to repair the damage and integrate a selected point mutation.
To elucidate the function of channelrhodopsins ChR1 and ChR2 in vivo, I created channelrhodopsin single knockouts in the wild-type Chlamydomonas strain and integrated point mutations in the remaining channelrhodopsin gene. The selected mutations affected photocycle kinetics and ion selectivity. It was shown that, first, both ChR1 and ChR2 are photoreceptors that mediate phototaxis and second, the upregulation of ChR2 upon the deletion of ChR1 rescues phototactic activity of the algae. Further, the mutant Chlamydomonas strains with altered photocycle kinetics and lower calcium permeability exhibited nearly 100-fold reduction of photosensitivity, a diminished photophobic reaction and faster light adaptation rates. Moreover, the conversion of channelrhodopsin selectivity to anions aborted algal photoresponse. In addition, the study highlighted the importance of proton conductance in the photo-induced behavior of Chlamydomonas.
|
3 |
Design and electrophysiological characterization of rhodopsin-based optogenetic toolsSchneider, Franziska 15 May 2014 (has links)
Kanalrhodpsine (ChRs) sind lichtaktivierbare Kationenkanäle, welche als primäre Fotorezeptoren in Grünalgen dienen. In der Optogenetik werden ChRs verwendet um neuronale Membranen zu depolarisieren und mit Licht Aktionspotentiale auszulösen. Das mit blauem Licht aktivierte Chlamydomonas Kanalrhodopsin 2 (C2) und effiziente Mutanten wie C2 H134R stellen die am häufigsten genutzten depolarisierenden, optogenetischen Werkzeuge dar. Komplementär zu ChRs werden Protonen- und Chloridpumpen aus Archaebakterien zur neuronalen Inhibierung durch lichtinduzierte Hyperpolarisation verwendet. In der vorliegenden Arbeit untersuchten wir die ChR-Chimäre C1V1, ein grünlichtaktiviertes ChR, das sich durch hervorragende Membranlokalisierung und hohe Fotoströme in HEK-Zellen auszeichnet. C1V1 und C1V1-Mutanten mit feinabgestimmten spektralen und kinetischen Eigenschaften ermöglichen die neuronale Aktivierung mit Wellenlängen bis 620 nm sowie die unabhängige Aktivierung zweier Zellpopulationen in Kombination mit C2. Um die strukturelle Basis von Kanalöffnung und Ionentransport in ChRs zu verstehen, wurden gezielt Mutationen in C2 und C1V1 eingeführt. Die Fotoströme der entsprechenden Mutanten wurden auf Kationenselektivität und kinetische Veränderungen untersucht. Während Aminosäuren, die den Kanal an der zytosolischen Seite begrenzen, die Kationenfreisetzung und Einwärtsgleichrichtung der ChRs bestimmen, spielen zentral im Kanal gelegende Aminosäuren ein entscheidende Rolle für Kationenselektivität und -kompetition. Ein enzymkinetisches Modell ermöglichte außerdem die Zerlegung der Fotoströme in Beiträge der verschiedenen, konkurrierenden Kationen. Im letzten Teil der Arbeit wurde pHoenix, ein optogenetisches Werkzeug zur Ansäuerung synaptischer Vesikel, entwickelt. In Neuronen des Hippocampus wurde pHoenix verwendet, um die treibenden Kräfte für die vesikuläre Neurotransmitteraufnahme sowie den Zusammenhang zwischen Vesikelfüllstand und Freisetzungswahrscheinlichkeit zu analysieren. / Channelrhodopsins (ChRs) are light-activated cation channels functioning as primary photoreceptors in green algae. In the emerging field of optogenetics, ChRs are used to depolarize neuronal membranes, thus allowing for light-induced action-potential firing. The blue light-activated Chlamydomonas channelrhodopsin 2 (C2) and high-efficiency mutants such as C2 H134R represent the most commonly used depolarizing optogenetic tools. Complementary to ChRs, green to yellow light-activated proton and chloride pumps originating from archea enable neuronal inhibition by membrane hyperpolarization. In the present work, we developed the chimeric ChR C1V1, a green-light activated ChR with excellent membrane targeting and high photocurrents in HEK cells. Action spectrum and kinetic properties of C1V1 were further fine-tuned by site-directed mutagenesis. The ensemble of C1V1 variants allows for neuronal activation with wavelengths up to 620 nm and can be used in two-color optogenetic experiments in combination with C2 derivatives. In order to understand the structural motifs involved in channel gating and ion transport, conserved residues in C2 and C1V1 were mutated and photocurrents of the respective mutants were analyzed for kinetic characteristics and cation selectivity. In these experiments, residues of the inner gate region were shown to alter cytosolic cation release and inward rectification, whereas central gate residues determine cation competition and selectivity, as well as the equilibrium between the two open channel conformations. Moreover, an enzyme-kinetic model was used to quantitatively dissect ChR photocurrents into the contribution of different competing cations. Finally, we designed pHoenix, an optogenetic tool enabling green-light induced acidification of synaptic vesicles. In hippocampal neurons, pHoenix was used to study both the energetics of vesicular neurotransmitter uptake and the impact of the vesicular contents on synaptic vesicle release.
|
4 |
Structural determinants of potassium selectivity in engineered and natural KCRsSchiewer, Enrico 30 July 2024 (has links)
Mikrobielle Rhodopsine sind Membranproteine, die Lichtsensitivität mit sensorischer, enzymatischer oder ionenleitender Funktion in einem Protein vereinen. Ihre strukturelle Kompaktheit macht lichtgetriebene Ionenpumpen und lichtgesteuerte Kanalrhodopsine (ChRs) zu weit verbreiteten optogenetischen Werkzeugen in der biologischen Forschung. Die Entdeckung und Entwicklung weiterer Ionenselektivitäten eröffnet neue Möglichkeiten der optogenetischen Manipulation des Membranpotentials elektrogener Zellen wie Neuronen. Seit langem wird an lichtgesteuerten K+-selektiven Ionenkanälen geforscht, um biologisch kompatible inhibierende Proteine zu kreieren. Eine Punktmutation im Rhodopsin KR2, einer lichtgesteuerten Na+-Pumpe aus dem Meeresbakterium Dokdonia eikasta, induzierte K+-selektive Leckströme. In dieser Studie wurden die Limitationen dieser KR2-R109Q-Mutante mithilfe elektrophysiologischer Methoden experimentell charakterisiert, begleitet von computergestützten pKa-Vorhersagen und MD-Simulationen. Eine Mutationsstudie offenbarte die molekularen Ursachen für die nachteilige pH-Abhängigkeit und die verbleibende Na+-Pumpaktivität. Durch Kombination von Schlüsselmutationen im Extrazellularraum des Proteins konnten diese Einschränkungen reduziert werden und größere K+-Leitfähigkeit unter physiologischen Bedingungen erzielt werden. Währenddessen wurden die ersten K+-selektiven ChRs unter physiologischen Bedingungen entdeckt, die KCRs. HcKCR1 aus der stramenopilen Alge Hyphochytrium catenoides und Mutanten der Ionenleitpore wurden elektrisch charakterisiert, unterstützt durch strukturelle Vorhersagen. Ein neuartiger hydrophober Selektivitätsfilter wurde identifiziert und seine Konservierung in verwandten Stramenopilen-ChRs nachgewiesen. WiChR aus Wobblia lunata zeigte hierbei eine beispiellose K+-Permeabilität und erreichte in Herzmuskelzellen und Neuronen hohe Eignung in Ein- und Zweiphotoneninhibition bei niedriger Lichtintensität und geringer Gewebeerwärmung. / Microbial rhodopsins are light-sensitive membrane proteins found in all domains of life. They combine photosensitivity with sensory, enzymatic or ion-translocating functions. Their structural simplicity makes light-driven ion pumps and light-gated channelrhodopsins (ChRs) valuable optogenetic tools for controlling cellular activity with light. Discovering and engineering new forms of ion selectivity expands possibilities for manipulating the membrane potential of electrogenic cells like neurons. Light-sensitive K+-selective ChRs have been highly anticipated as inhibitory optogenetic tools. A point mutation in the central gate of KR2, a light-driven Na+-pump rhodopsin from the marine bacterium Dokdonia eikasta, resulted in K+-selective leak photocurrents. This study experimentally characterized the main limitations of this KR2-R109Q variant using two-electrode and whole-cell voltage-clamp methods, supported by computational pKa prediction and classical MD simulations. An extensive mutational study revealed the molecular cause for the detrimental pH-sensitivity and residual Na+-pumping activity. Combining key mutations in the extracellular part of the protein reduced these limitations, yielding larger K+-selective photocurrents under physiological conditions. During this study, a novel ChR family with superior properties, Kalium ChRs (KCRs) was discovered, representing the first K+-selective ChRs under physiological conditions. HcKCR1 from the stramenopile alga Hyphochytrium catenoides and mutants of its putative ion conduction pore were electrically characterized in WCVC experiments, supported by structural predictions. A novel type of hydrophobic selectivity filter was identified and found to be conserved in related stramenopile ChRs. Among them, WiChR from Wobblia lunata exhibited an unmatched preference for K+ over Na+ and favorable performance in cardiac myocytes and neurons, allowing single- and two-photon inhibition at low irradiance and reduced tissue heating.
|
5 |
Anion Conducting ChannelrhodopsinsWietek, Jonas 09 August 2018 (has links)
Seit mehr als 10 Jahren kann biologische Aktivität durch eine Vielzahl photosensorischer Proteine beeinflusst werden. In diesem als Optogenetik bezeichneten Forschungsgebiet, werden Kationen leitende Kanalrhodopsine (CCRs) als lichtinduzierte neuronale Aktivatoren eingesetzt. Diese Arbeit soll zur Vervollständigung von optogenetischen Werkzeugen durch die Entwicklung Anionen leitender Kanalrhodopsine (ACRs) dienen, um die bestehenden Nachteile mikrobieller lichtgetriebener Ionenpumpen zu überwinden, die bislang zur neuronale Inhibition genutzt wurden.
Der Austausch von E90 in C. reinhardtii Kanalrhodopsin 2 (CrChR2) durch positiv geladene Aminosäuren führte zu Entwicklung Chlorid leitender ChRs (ChloCs), die jedoch eine Restkationen-permeabilität aufwiesen. Durch Substitution zweier weiterer negativen Ladungen innerhalb des Ionenpermeationsweges, konnte die Kationenleitung vollständig aufgehoben werden.
Parallel wurde durch A. Berndt et al. ein inhibitorisches C1C2 (iC1C2), basierend auf der CrChR1/2 Chimäre entwickelt. Wie auch bei den ChloCs, zeigte iC1C2 verbesserungswürdige biophysikalische Eigenschaften. Mutagenesestudien des Ionenpermeationsweges führten zur Entwicklung der verbesserten Nachfolgervariante iC++.
Um ausgehend von weiteren CCRs neuartige ACRs zu entwickeln (eACRs), wurden die zuvor angewandten Mutagenesestrategien auf weitere CCRs übertragen. Zwei neue eACRs, Phobos und Aurora, mit jeweils blau- und rotverschobenen Aktionsspektrum konnten generiert werden. Bistabile eACRs wurden erzeugt, die ein lichtgesteuertes Schalten zwischen offenen und geschlossenen Zuständen ermöglichen.
Schlussendlich wurde ein natürlich vorkommendes ACR (nACR) aus Proteomonas sulcata (PsACR1) identifiziert und charakterisiert. Die Maximalaktivität von PsACR1 zählt mit 540 nm zu den am stärksten rotverschobenen unter den nACRs. Elektrophysiologische und spektroskopische Untersuchungen ergaben, dass sich der Photozyklus von PsACR1 signifikant von jenen der CCRs unterscheidet. / For more than 10 years, photosensory proteins have developed as powerful tools to manipulate biological activity. In this research field termed optogenetics, cation-conducting channelrhodopsins (CCRs) mainly are utilized as light-induced neural activators. This study aimed at a complementation of the optogenetic tool box by engineering anion-conducting channelrhodopsins (ACRs) to overcome the existing drawbacks of microbial light-driven ion pumps utilized for neural inhibition so far.
Replacement of E90 in the cation-conducting C. reinhardtii channelrhodopsin 2 (CrChR2) with positively charged residues reversed the ion selectivity and yielded chloride-conducting ChRs (ChloCs). Applied in neuronal cell culture, ChloCs showed residual cation permeability occasionally leading to excitation instead of the desired inhibition. Further charge elimination within the ion permeation pathway completely abolished cation conduction.
In parallel, an inhibitory C1C2 (iC1C2) was developed by A. Berndt et al. based on a CrChR1/2 chimera. Though, iC1C2 displayed unsatisfactory biophysical properties as well. Further mutational modifications of the ion permeation pathway led to the development of the improved successor variant iC++.
A systematic transfer of both conversion strategies to other CCRs was conducted to create engineered ACRs (eACRs) with distinct biophysical properties. Two novel eACRs, Phobos and Aurora, with blue- and red-shifted action were obtained. Additionally, step-function mutations greatly enhanced the operational light sensitivity and enabled temporally precise toggling between open and closed states using two different light colors.
Finally, a natural ACR (nACR) originating from Proteomonas sulcata (PsACR1) was identified and characterized. With a maximum activation at 540 nm it is one of most red-shifted nACRs. Single turnover electrophysiological measurements and spectroscopic investigations revealed an unusual photocycle compared to that of CCRs.
|
6 |
Spektroskopische Charakterisierung der grün-absorbierenden Kanalrhodopsin-Chimäre ReaChRKrause, Benjamin Sören 06 September 2018 (has links)
Kanalrhodopsine (ChRs) sind lichtgesteuerte Ionenkanäle, welche nach Absorption eines Photons durch den Retinal-Cofaktor einen passiven Ionentransport über die Zellmembran katalysieren. Im Zuge von optogenetischen Anwendungen wird diese Reaktion für die Beeinflussung der Ionenhomöostase von verschiedenen Zelltypen und Geweben ausgenutzt. Zu Beginn dieser Arbeit wurden lichtinduzierte Strukturänderungen und Protontransferschritte in einem breiten Zeitbereich (Nanosekunden bis Minuten) in dem grün-absorbierenden ChR ReaChR mithilfe von stationärer und transienter UV-vis- und Fourier-Transform-Infrarot-Spektroskopie (FTIR) untersucht. Auf Basis der experimentellen Daten wurde ein komplexes Photozyklus-Modell konzipiert.
Anschließend wurde die IR-aktive, nichtkanonische Aminosäure p-Azido-L-phenylalanin (azF) mittels Stopp-Codon-Suppression ortsspezifisch an mehreren Positionen innerhalb der vermuteten ionenleitenden Kanalpore in ReaChR inkorporiert und mit FTIR untersucht. azF ist sensitiv gegenüber Polaritätsänderungen und absorbiert in einem hochfrequenten Bereich (~2100 cm-1). Aufgrund der großen spektralen Separation zu endogenen Proteinschwingungen (< 1800 cm-1) können globale Konformations- und lokale Hydratisierungsänderungen simultan detektiert werden. Die erhobenen Daten leisten einen wichtigen Beitrag zum Verständnis der Bildung einer temporären Wasserpore in ChRs und demonstrieren zum ersten Mal den erfolgreichen in-vivo-Einbau einer artifiziellen Aminosäure in mikrobielle Rhodopsine und dessen schwingungsspektroskopische Analyse. Die Methode bietet aufgrund ihrer hohen Ortsauflösung ein großes Potential für die Studie von Mikroumgebungen innerhalb komplexer Proteinensemble. / Channelrhodopsins (ChRs) are light-gated ion channels. Upon absorption of a photon, the retinal chromophore isomerizes and drives conformational changes within the protein, which lead to a passive ion transport across the cell membrane. This capability is used for optogenetic applications to manipulate ionic homeostasis of different cell types and entire organisms. Within the work, light-induced structural changes and proton transfer steps were studied in the green-absorbing ChR ReaChR in great detail by steady-state and transient UV-vis and Fourier transform infrared spectroscopy (FTIR). The data were merged into a complex photocycle model.
Next, the IR-active, unnatural amino acid p-azido-L-phenylalanine (azF) was site-specifically introduced at several sites of the putative ion pore of ReaChR by stop codon suppression. azF is sensitive to polarity changes and absorbs in a clear spectral window lacking endogenous protein vibrations. Thus, FTIR measurements of labeled mutants report for global conformational changes (< 1800 cm-1) and local hydration changes (~2100 cm-1) simultaneously. The presented findings reveal crucial insights regarding formation of a transient water pore in ChRs and demonstrate the first report of the successful in-vivo incorporation of an artificial amino acid into a microbial rhodopsin and its subsequent spectroscopic investigation. Additionally, the so far unprecedented spatial resolution renders this methodology superior over conventional FTIR methods to study microenvironments within complex protein ensembles.
|
7 |
Molekularer Mechanismus protonenleitender Kanalrhodopsine und protonengekoppelte Zwei-Komponenten-OptogenetikVierock, Johannes Tobias Theodor 29 July 2020 (has links)
Kanalrhodopsine (ChRs) sind lichtaktivierte Ionenkanäle motiler Algen. Heterolog exprimiert erlauben sie es, Ionenflüsse durch Licht zu steuern. Bevorzugt geleitet werden von den meisten ChRs Protonen. Ausprägung und Wirkung lichtaktivierter Protonenflüsse sowie der molekulare Mechanismus protonenselektiver ChRs werden in vorliegender Arbeit untersucht und zur Entwicklung neuer optogenetischer Werkzeuge genutzt. Eine besonders hohe Protonenselektivität zeigten die grün- und rotlicht-aktivierten Kanäle CsChR und Chrimson aus den Algen Chloromonas subdivisa und Chlamydomonas noctigama. Im spektroskopisch detailliert untersuchten CrChR2 aus Chlamydomonas reinhardtii änderte sich die Protonenselektivität nach Anregung mit einem ns-Laserblitz sogar innerhalb eines Aktivierungszyklus und war insbesondere nach Öffnung des Kanals sowie in Folge der Lichtadaptation hoch. Als unentbehrlich für eine effiziente Protonenleitung erwiesen sich in allen drei Kanälen konservierte, titrierbare Reste entlang der Pore, deren individuelle Bedeutung für die Protonenleitung sich je nach Protein wesentlich unterschied. Entsprechend genügte in Chrimson der Austausch einzelner Glutaminsäuren des extrazellulären Halbkanals, dieses in einen grün- oder rotlichtaktivierten Natriumkanal zu transformieren. Aminosäuresubstitutionen der unmittelbaren Retinalumgebung verschoben hingegen das Aktionsmaximum von Chrimson röter als 600 nm und damit röter als in allen bisher beschriebenen ChRs. In Chrimson versperrt hierbei ein zusätzliches äußeres Tor den extrazellulär Halbkanal, während die Retinalbindetasche in Struktur und funktionaler Bedeutung der einzelnen Reste wesentlich jener der Protonenpumpe Bacteriorhodopsin ähnelt. Als Zwei-Komponenten-Optogenetik wurden schließlich protonen-, kationen- und anionenleitende ChRs unterschiedlicher Farbsensitivität fusioniert sowie lichtgetriebene Protonenpumpen mit protonenaktivierten Ionenkanälen kombiniert und neue optogenetische Perspektiven eröffnet. / Channelrhodopsins (ChRs) are light-gated ion channels from green algae. Expressed in host cells they are used to control ion fluxes by light and are widely applied in Neurosciences. Although generally classified as either cation or anion channels, most ChRs preferentially conduct protons. This thesis compares proton conductance of different ChRs, examines the molecular mechanism of proton selective ChRs and explores the usage of light regulated proton fluxes in two-component-optogenetics.
Proton selectivity varied strongly among different ChRs and was most pronounced for the green- and red-light activated channels CsChR and Chrimson from the algae Chloromonas subdivisa and Chlamydomonas noctigama, that conducted predominantly protons even at high pH. In CrChR2 from Chlamydomonas reinhardtii proton selectivity also changed during a single activation cycle and was especially high directly after channel opening and later on following light adaptation. In all three channels efficient proton conductance depended on conserved titratable residues along the pore with different contribution of the individual side chains in each protein. The substitution of single glutamic acids in the extracellular half pore converted Chrimson into a green or red-light activated sodium channel. A single point mutation close to the retinal chromophore shifted peak absorption of Chrimson beyond 600 nm - further red than all other cation conducting ChRs. Whereas the retinal binding pocket of Chrimson resembles the proton pump Bacteriorhodpsin, the overall pore structure corresponds to other ChRs, but features an additional outer gate, that occludes the extracellular half pore and is important for both, proton selectivity and red light absorption.
Finally different Two-Component-Optogenetic approaches combined proton and anion selective ChRs of distinct colour as well as light-driven proton pumps and proton-activated ion channels with major prospect for future optogenetic applications.
|
8 |
Characterization of metagenomically identified channelrhodopsinsOppermann, Johannes 13 April 2021 (has links)
Kanalrhodopsine (ChRs), lichtgesteuerte Ionenkanäle, vermitteln phototaktische Reaktionen in beweglichen Algen und sind als optogenetische Werkzeuge zur Manipulation der Zellaktivität mittels Lichts weit verbreitet. Viele Kationen- und Anionen-leitende ChRs (CCRs und ACRs) wurden aus kultivierbaren Chlorophyten- und Cryptophytenarten identifiziert. Die meisten mikrobiellen Organismen kann jedoch nicht kultiviert werden, was zu einem unvollständigen Bild der ChR-Vielfalt führt. Die Metagenomik öffnet die Tür für Erkenntnisse über die Verteilung von ChRs in unkultivierten Organismen. Diese Arbeit beschreibt die biophysikalische Charakterisierung von zwei Gruppen metagenomisch identifizierter ChRs.
Die MerMAIDs (Metagenomically discovered marine, anion-conducting, and intensely desensitizing ChRs) sind eine neue ChR-Familie und zeigen nahezu komplette Photostrom-Inaktivierung unter Dauerlicht. Die Photoströme lassen sich durch einen Photozyklus erklären, der zur Akkumulation eines langlebigen und nicht-leitenden Photointermediats führt. Ein konserviertes Cystein ist für dieses Phänomen entscheidend, da seine Substitution zu einer stark reduzierten Inaktivierung führt.
Die Prasinophyten ChRs, die große carboxyterminale Domänen aufweisen, wurden in großen, marinen Viren identifiziert, die sie von ihren beweglichen und einzelligen Grünalgen-Wirten durch lateralen Gentransfer übernommen haben. Heterolog exprimiert, sind die viralen ChRs nur nach Ergänzung von Transportsequenzen und carboxyterminaler Kürzung funktional. Die Grünalgen- und viralen ChRs sind Anionen-leitend mit nicht-inaktivierenden Photoströmen, wenn sie in Säugetierzellen exprimiert werden, obwohl die viralen Vertreter weniger leitfähig und zytotoxisch sind. Nichtsdestotrotz repräsentiert diese ChR-Gruppe die ersten Grünalgen- und Virus-ACRs.
Diese Arbeit zeigt eine breite Verteilung der ACRs unter marinen mikrobiellen Organismen und die Bedeutung der Funktionsmetagenomik bei der Entdeckung neuer ChRs. / Channelrhodopsins (ChRs) are light-gated ion channels mediating phototactic responses in motile algae and widely used as optogenetic tools to manipulate cellular activity using light. Many cation- and anion-conducting ChRs (CCRs and ACRs) have been identified from culturable chlorophyte and cryptophyte species. However, most microbial organisms cannot be cultured, resulting in an incomplete view of the diversity of ChRs. Metagenomics opens the door to gather insights on the distribution of ChRs in uncultured organisms. Here, the biophysical characterization of two groups of metagenomically identified ChRs is described.
The MerMAIDs (Metagenomically discovered marine, anion-conducting, and intensely desensitizing ChRs) represent a new ChR family with near-complete photocurrent desensitization under continuous illumination. The photocurrents can be explained by a single photocycle leading to the accumulation of a long-lived and non-conducting photointermediate. A conserved cysteine is critical for this phenomenon, as its substitution results in a strongly reduced desensitization.
The prasinophyte ChRs, harboring large carboxy-terminal extensions, were identified in marine giant viruses that acquired them from their motile and unicellular green algal hosts via lateral gene transfer. Expressed in cell culture, the viral ChRs are only functional upon the addition of trafficking sequences and carboxy-terminal truncation. The green algal and viral ChRs are anion-conducting and display non-desensitizing photocurrents when expressed in mammalian cells, though the viral representatives are less conductive and cytotoxic. Nonetheless, this group of ChRs represents the first green algal and viral ACRs.
This thesis highlights a broad distribution of ACRs among marine microbial organisms and the importance of functional metagenomics in discovering new ChRs.
|
Page generated in 0.0729 seconds