Spelling suggestions: "subject:"orbit"" "subject:"irbit""
41 |
On-board orbit determination and 3-axis attitude determination for picosatellite applications a thesis /Bowen, John Arthur. Puig-Suari, Jordi. January 1900 (has links)
Thesis (M.S.)--California Polytechnic State University, 2009. / Title from PDF title page; viewed on January 8, 2009. Major professor: Jordi Puig-Suari, Ph.D. "Presented to the faculty of California Polytechnic State University, San Luis Obispo." "In partial fulfillment of the requirements for the degree [of] Master of Science in Aerospace Engineering." "July 2009." Includes bibliographical references (p. 70-71). Will also be available on microfiche.
|
42 |
Reconstrução orbitária com implantes Medpor® : estudo histomorfológico e imunohistoquímico /Ferreira, Ana Carulina Rezende de Moraes. January 2017 (has links)
Orientador: Idelmo Rangel Garcia Júnior / Banca: Alexandre Meireles Borba / Banca: Roberta Okamoto / Resumo: Entre os materiais aloplásticos, o Medpor® apresentou um aumento consideravel no uso de 17% a 30%, portanto o objetivo desse trabalho foi avaliar a utilização do Medpor® na reconstrução do assoalho orbitário. Foram utilizados 18 ratos que sofreram trauma cirúrgico no assoalho orbitário, simulando uma fratura tipo "blow-out". O lado direito do animal recebeu implante de Medpor® e o lado esquerdo não recebeu qualquer tipo de material. Nos períodos de 15, 40 e 90 dias foram realizadas as eutanásias e obtenção das peças para processamento histológico e imunohistoquímico. Os cortes obtidos foram corados com hematoxilina e eosina, tricrômico de Masson e marcação imunohistoquímica nos períodos de 15, 40 e 90 dias com a osteocalcina e RUNX2. O processo de reparo no lado controle finalizou com neoformação óssea aos 40 dias e perda do contorno ósseo inicial, criando um defeito no assoalho de órbita. O grupo tratado mostrou prevalência de tecido conjuntivo em contato com o implante de Medpor®, tanto em sua periferia quanto no seu interior. Não houve processo inflamatório intenso e ou agudo junto ao material. A imunomarcação mostrou escores intensos de OC após 15 dias de pós- operatórios e manteve expressão moderada após 40 e 90 dias pós-operatório, a RUNX2 foi moderadamente expressa em todos os períodos avaliados. Concluimos que o polietileno poroso (Medpor®) é um biomaterial bionert seguro e eficaz, a sua presença levou ao reparo ósseo local e compensou a ausência de te... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The aim of this research was to assessed histological and immunohistochemi cal properties in the use of porous polyethylene (Medpor®) for orbital floor reconstruction. Under general anesthesia 18 male rats (Rattus, norvegicus, albinus, Wistar) underwent bilateral surgical defect, simulating blowout fracture and infraorbital rim. Groups were divided as follow: GI control group and GII surgical defects were reconstructed with Medpor®. After 15, 40, and 90 days animals were euthanized with anesthetic overdose. Orbital specimens were laboratorial process, coronal slices were stained in Hematoxylin and Eosin and Masson trichrome. Immunohistochemical assess of osteocalcin (OC) and Core- binding factor alpha1 (Cbfa1) were performed. Bone repair at the control group was achieved after 40 days with loss of the orbital rim and lack of ocular support. Immunolabeling showed intense scores of OC after 15 days post-operative and maintain moderate expression after 40 and 90 days postoperative, Cbfa1 was moderately express within all the periods evaluated. Medpor® group showed fibrous tissue in contact with the implant in the inner and outer surface, without new-bone formation and without intense inflammatory infiltrate nearby the biomaterial, the Medpor® gave enough support for the ocular globe / Mestre
|
43 |
Spin-dependent interactions in the three-body eikonal modelBush, Matthew Peter January 1997 (has links)
A derivation of the elastic scattering differential cross section, within a three-body eikonal model, that treats both central and spin-orbit interactions between the constituent projectile clusters and the target is presented. This formalism is then used in the theoretical study of the scattering of 8B from 12C at 40 MeV/nucleon. The proton halo candidate, 8B, is taken to consist of a single valence proton orbiting a 7Be core cluster. Calculation of the elastic scattering amplitude relies upon determining the phase shifts caused as the projectile passes through the region of interaction with the target. A form for the orbital angular momentum operator of each projectile cluster about the target is obtained that allows a relatively simple form for the spin-orbit phase shift functions, analogous to those for the central interactions, to be deduced. The study of the angular distribution of the elastic scattering differential cross section is carried out in two parts. Initially the effect of elastic break-up and recombination of the projectile during the scattering process, only taking into account central interactions, is studied. To gauge the magnitude of these effects, within the three-body model, the elastic scattering differential cross section, in the limit of no projectile break-up, is derived. Despite the very small binding energy of 8B it is shown that these effects are quite small. It is also shown, however, that these effects become more conspicuous as the valence proton becomes less localised about the core. Finally the effect of including spin-orbit interactions is studied. In the system under study these effects are shown to have an almost negligible effect on the angular distribution of the differential cross section. However, increasing the projectile kinetic energy to the region of hundreds of MeV/nucleon is seen to increase their significance. Future calculations hope to look at the angular distribution of the elastic scattering differential cross section and vector and tensor analysing powers of polarised beams of deuterons as these systems are expected to show more sensitivity to spin- orbit interactions. Furthermore, with the possibility of polarised beams of halo nuclei, the three-body Glauber model would be an ideal theoretical tool with which to study certain of their spin-related phenomena too.
|
44 |
Satelites estabilizados por rotação e torque magnético residualGarcia, Roberta Veloso [UNESP] 02 1900 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:25:30Z (GMT). No. of bitstreams: 0
Previous issue date: 2007-02Bitstream added on 2014-06-13T19:12:15Z : No. of bitstreams: 1
garcia_rv_me_guara.pdf: 930247 bytes, checksum: b94e8ad1078ac15ad366a27e55b66b3a (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Universidade Estadual Paulista (UNESP) / Uma abordagem analítica para o movimento rotacional de satélites artificiais estabilizados por rotação é apresentada, considerando os satélites em órbita elíptica e a influência do torque magnético residual. O torque magnético residual resulta da interação entre o campo magnético residual do satélite e o campo geomagnético, sendo este representado pelo modelo de quadripolo. As equações do movimento são descritas em termos do módulo da velocidade de rotação do satélite, da declinação e da ascensão reta do eixo de rotação do satélite. As componentes médias do torque residual em um sistema fixo no satélite são determinadas para um período orbital. Uma solução analítica para as equações do movimento é determinada, sendo válida para um período orbital. Por esta solução observa-se que o torque residual não afeta o módulo da velocidade de rotação, contribuindo apenas para as variações temporais da ascensão reta e declinação do eixo de rotação, associadas com a precessão e deriva do eixo de rotação do satélite. Aplicações são realizadas para os Satélites de Coleta de Dados Brasileiros SCD1 e SCD2, mostrando uma concordância entre os resultados obtidos pela teoria e os dados fornecidos pelo Centro de Controle de Satélites do INPE. O comportamento do erro gerado na direção do eixo de rotação do satélite é também apresentado, sendo que os desvios obtidos se mostram de acordo com as precisões requeridas para as missões destes satélites. / An analytical approach is show for attitude motion of the spin stabilized artificial satellite in an elliptic orbit. Residual magnetic torque is considered and the geomagnetic torque is defined by the quadripole model. The equations of motion are described by the magnitude of the spin velocity, right ascension and declination of the spin axis. The components of the averaged residual torque are computed for one orbital period in a satellite reference system. An analytical solution is presented and it is valid for one orbit period. By this solution it is possible to observe that the residual torque causes the precession and the drift of the spin axis, but it does not affect the magnitude of spin velocity. Some applications are done for Brazilian Satellite SCD1 and SCD2, and they show the agreement of the theory results and the data provide by INPE Satellite Control Center. The behavior of the error in the spin axis direction is also presented and this error agrees with the required precision of these satellite missions.
|
45 |
Pertubações orbitais devidas a maré terrestreSantos Nadjara dos [UNESP] January 2002 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:24:13Z (GMT). No. of bitstreams: 0
Previous issue date: 2002Bitstream added on 2014-06-13T20:51:43Z : No. of bitstreams: 1
santos_n_me_guara.pdf: 418632 bytes, checksum: 4f860ab8b61150a88cbfa52adf66369f (MD5) / Aplicações recentes de satélites artificiais, principalmente aquelas com finalidades geodinâmicas e altimétricas, requerem órbitas determinadas com bastante precisão. Em particular as marés terrestres alteram o geopotencial, causando perturbações adicionais no movimento do satélite. Tais perturbações, apesar de pequenas, têm sido detectadas. O presente trabalho trata de perturbações de órbitas de satélites artificiais devidas às marés terrestres. Ênfase é dada aos termos seculares e de longo período. O potencial foi desenvolvido em termos dos elementos orbitais e substituídos nas equações planetárias de Lagrange. Soluções analíticas estão apresentadas para casos particulares considerando os números de Love constantes. Um programa foi elaborado, e colocado a disposição do usuário, permitindo calcular, para um dado satélite, a amplitude e o período dos termos perturbadores mais significativos. / Recent applications of artificial satellites, mainly those of geodynamics and altimetric purposes, requires high precise orbit determination. Particularly, Earth tides change the geopotencial causing additional perturbation in the satellite orbital motion. Inspite of being very small such perturbations, has been detected. The present work concerns about orbit perturbations of artificial satellites due do terrestrial tides. Treatment of secular and long period terms is emphasized. The potencial was developed in terms of the orbital elements and substituted in the Lagrange equations. Analytical solutions are presented for particular cases considering the Love’s number as constant. A computer enabling to compute, for a given satellite, the amplitude and period of the more significant disturbing terms, was constructed and it is, at the disposal for users.
|
46 |
Spin Transport in Magnetic Nano-StructuresChen, Kai, Chen, Kai January 2017 (has links)
Since the discovery of giant magnetoresistance in 1980s, Spintronics became an exciting field which studies numerous phenomena including the spin transport in magnetic heterostructures, magnetization dynamics and the interplay between them. I have investigated different topics during my graduate research. In this dissertation, I summarize all my projects including spin pumping, spin convertance and spin injection into ballistic medium.
First, we develop a linear response formalism for spin pumping effect. Spin pumping refers that a precessing emits a spin current into its adjacent nonmagnetic surroundings, which was originally proposed using scattering theory. The newly developed formalism is demonstrated to be identical the early theory in limiting case. While our formalism is convenient to include the effects of disorders and spin-orbit coupling which can resolve the quantitative controversies between early theory and experiments. Second, the spin pumping experiments indicates a much smaller spin Hall angle compared with the results obtained via the spin transfer torque measurements. We found that such issues can be resolved when taking into consideration the effects of non-local conductivity. And we conclude neither of the two methods measures the real spin Hall angle while the spin pumping methods provides much accurate estimations. Third, we developed the spin transport equations in weak scattering medium in the presence of spin-orbit coupling. Before this, all spin dependent electron transport has been modeled by the conventional spin diffusion equation. While recent spin injection experiments have seen the failure of spin diffusion equation. As the experimental fitting using spin diffusion models led to unrealistic conclusions. At last, we study the spin convertance in anti-ferromagnetic multilayers, where the spin information can be mutually transferred between ferromagnetic/anti-ferromagnetic and conduction electrons. Our theory successfully explained the experiment results that the insertion of thin NiO film between YIG/Pt largely enhances the spin Seebeck currents.
|
47 |
An Orbit Control System for UWE-4 Using the High Fidelity Simulation Tool OrekitAzari, Pouyan January 2017 (has links)
Cubesats are picosatellites that have a mass of less than 1.3kg and have a shape of acube. As a result of their low cost of development and launch, cubesats are gainingpopularity in industry and academia. These satellites are also a cost-efective way forspace technology demonstrations. University of Würzburg has a longstanding cubesatprogram started with the launch of UWE-1 in 2005. This was followed by UWE-2 andUWE-3. Several technologies were tested and validated using the UWE platform. Thelast mission UWE-3 has successfully tested an attitude control system.In the next mission, UWE-4 will demonstrate an orbit control system. Being a picosatellite as small as this one (10 x 10 x 10cm 3 and 1kg) brings new challenges intodi↵erent aspects of satellite design, development, control and operation. The orbit con-trol of such a satellite is one of the problems that should be tackled. Being such a smallsatellite means having less propellant mass and much smaller thrusters than conventionalsatellites. These should be addressed in the orbit control. UWE-4 will take advantage of four NanoFEEP thrusters, on one side. Because of theiraccuracy and functionality, these thrusters can be used to implement a continuous thrustsystem. They are also a good choice because of their low energy usage. This work startswith the preparation that was needed to implement a control system. Then explains thestate of the art for continuous thrust control systems. Implements two di↵erent methods,based on perfect control and discusses the outcome. It discuses the limiting factors, likefuel mass, available electrical energy and their e↵ect on the controller performance andconcludes with recommendation for the future researches. / UWE-4
|
48 |
Satellite Constellation Architecture and Design to take Advantage of On-Orbit Servicing and RepairSciortino, Douglas 01 October 2018 (has links)
Access to space is becoming less expensive, which is allowing smaller companies with big ideas, such as on-orbit servicing and repair, to enter into the space industry. On-orbit servicing and repair provides capabilities, such as towing, refueling, inspections, and physical repair, to add additional life to on-orbit satellites by resolving life-limiting issues. On-orbit servicing and repair is technically possible, but there is still one major issue that continues to stifle the on-orbit servicing and repair market -- “satellites are not built with servicing in mind” (Parker, 2015).The on-orbit servicing and repair industry is stagnate due to a challenging conundrum. Potential satellite customers are unwilling to pay for on-orbit servicing or repair until the capability is successfully demonstrated on-orbit. Unfortunately, it is difficult for the industry to prove the capability without customers willing to take a little risk. This “chicken and egg” scenario leaves several satellite manufacturers unwilling to change their satellite architectures and designs to accommodate on-orbit servicing and repair. This paper attempts to show the “how” and the “why” the space industry should change their architectures and designs to enable on-orbit servicing and repair.There are many satellite bus components/consumables, including software, that could fail and shorten a satellite’s life. However, the bus components/consumables that fail the most, batteries, solar arrays, propellant, reaction wheels, and power distribution components, are best suited for on-orbit servicing and repair. These five bus components/consumables, in addition to the satellite as a whole, will require several design changes specific to each bus component, which will drive new or updated requirements for each. Additionally, to increase the effectiveness and efficiency of on-orbit servicing and repair, satellite architectures will require changes, such as an on-orbit depot, on-orbit warehouse, and on-orbit gas tank.The consequence of changing satellite design will affect satellite ground testing. The on-orbit servicing and repair processes, such as rendezvous, docking, and EMI/EMC will require testing between the on-orbit servicer and its customer satellite. The on-orbit servicing and repair capability provides the satellite manufacturer the ability to reduce qualification testing, run-time testing, and burn-in testing. This capability increases the probability that redundancy for these five bus components/consumables is no longer required, which reduces the hardware cost and testing schedule for each satellite. On-orbit servicing and repair creates seven new risks -- do no harm, debris and contamination, on-orbit servicer reliability, politics, cyber security, liability, and unintended consequences -- that must be mitigated.Two simple business cases demonstrate the possible value of this new capability. The business case for Low Earth Orbit (LEO) does not provide a return on investment, because on-orbit servicing and repair in LEO is too difficult and too expensive to justify an investment. On the other hand, the business case for Geosynchronous Orbit (GEO), in two distinct scenarios, does provide a return on investment. Those two scenarios are a beginning of life anomaly, and an extension of life.
|
49 |
Spin Torques in Systems with Spin Filtering and Spin Orbit InteractionOrtiz Pauyac, Christian 19 June 2016 (has links)
In the present thesis we introduce the reader to the field of spintronics and explore new phenomena, such as spin transfer torques, spin filtering, and three types of spin-orbit torques, Rashba, spin Hall, and spin swapping, which have emerged very recently and are promising candidates for a new generation of memory devices in computer technology. A general overview of these phenomena is presented in Chap. 1. In Chap. 2 we study spin transfer torques in tunnel junctions in the presence of spin filtering. In Chap. 3 we discuss the Rashba torque in ferromagnetic films, and in Chap. 4 we study spin Hall effect and spin swapping in ferromagnetic films, exploring the nature of spin-orbit torques based on these mechanisms. Conclusions and perspectives are summarized in Chap. 5.
|
50 |
Method and Simulation of On-Orbit Sub-microthrust EvaluationHood, Jonathan 01 June 2022 (has links) (PDF)
With the advent of smaller satellites, along with the need for less than 0.1 μN precision attitude control for interferometry and imaging missions, finer micro- to sub-micro- thrusters have become an area of high interest. As thrusters are developed and ground-tested, it is necessary to evaluate their thrust performance on-orbit. On-orbit measurements offer actual thrust performance in mission conditions, free from ground facility vibrations and miniaturization restraints, and allow a thruster system to achieve a NASA Technology Readiness Level (TRL) of 7-8. A review is conducted of existing and proposed ground and on-orbit thrust measurement techniques. Experimental gaps and complementary methods are examined along with the current thrust resolution limits. A novel fusion technique combining attitude determination, torsional balance, and filtering techniques is proposed to increase resolution beyond current on-orbit minimums, 4μN, via a dedicated sub-μN on-orbit thrust measurement mission. A simulated case study in the application of this measurement technique to a theoretical Casimir-thruster-equipped, 10-7-10-13 N, smallsat mission is explored. A detailed error analysis is conducted, and the technique is found to be analytically viable for greater than or equal to 10-7 N on a 1U nanosat equipped with sun sensor and three-axis gyroscope, as well as physically viable at a TRL 7-9 level. Recommended next steps are modification of the post-processing technique to decrease gyroscope noise and mass restrictions or exploration of suggested alternate methods, including orbit estimation, direct force sensing, and formation flying.
|
Page generated in 0.0701 seconds