• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Croissance, structure et magnétisme dans les systèmes à décalage d'échange FM/AFM : approche fondamentale par la physique des surfaces / Growth, structure and magnetism in exchange coupled FM/AFM Systems : fundamental approach by surface physics

Medeiros Soares, Marcio 09 June 2011 (has links)
Nous nous proposons d'étudier l'interaction au niveau de l'interface entre un matériau antiferromagnétique et un ferromagnétique par un ensemble de techniques expérimentales qui utilisent le rayonnement synchrotron. Nous sommes particulièrement intéressés par l'effet de couplage d'échange dans les couches minces magnétiques avec anisotropie hors du plan. Les systèmes que nous avons étudiés sont les couches ordonnées chimiquement, FePt et MnPt sur Pt(001), et Fe/Ag(001), éventuellement couplée à CoO. Notre approche consiste à trouver de surfaces adaptées et d'étudier, pour chaque bicouche, la croissance individuelle de chaque élément, alliage ou oxyde. A travers le contrôle d'un certain nombre des paramètres, comme la structure de la surface, la propreté, le taux et la température de déposition, nous avons obtenus une bonne connaissance du processus de croissance. Les systèmes obtenus ont été étudiés in situ par la diffraction de surfaces et ex situ par l'effet Kerr magnéto-optique, le dichroïsme circulaire magnétique de rayons X et la spectroscopie d'absorption de rayons X. La relation entre le couplage d'échange, qui se manifeste par l'augmentation de la coercivité et par un champ de décalage, et la structure des couches est discutée pour les interfaces MnPt/FePt and CoO/Fe. / Our aim is to study the interaction of antiferromagnetic and ferromagnetic materials with well-defined interface by combining structural, electronic and magnetic techniques using synchrotron light. Our interest is guided by the exchange bias effect in thin ferromagnetic films with perpendicular magnetic anisotropy. The main systems studied in this work were ultra-thin layers of chemically-ordered alloys of FePt and MnPt on Pt(001) and of Fe/Ag(001), eventually coupled to CoO. Our strategy was to find an appropriate surface and, for each coupled bilayer, study the individual growth of each element, alloy or oxide. By controlling a variety of parameters, such as surface structure, cleanliness, deposition rate and temperature, we have got a good understanding of the growth process. The coupled systems obtained were studied in situ by grazing incidence X-ray diffraction and ex situ by magneto-optic Kerr effect, X-ray magnetic circular dichroism and X-ray absorption spectroscopy. The relation between the exchange coupling, which manifests itself by an increase in coercivity and a bias field, and the structural characteristics was discussed for the MnPt/FePt and CoO/Fe interfaces.Keywords: exchange bias, chemically ordered alloy, MnPt, FePt, Fe/Ag(001), surface X-ray diffraction, X-ray absorption, MOKE, synchrotron.
2

Nanocrystalline Fe-Pt alloys: phase transformations, structure and magnetism / Nanokristalline Fe-Pt Legierungen: Phasenumwandlungen, Struktur und Magnetismus

Lyubina, Julia 18 May 2007 (has links) (PDF)
This work has been devoted to the study of phase transformations involving chemical ordering and magnetic properties evolution in bulk Fe-Pt alloys composed of nanometer-sized grains. A comprehensive study of phase transformations and ordering in Fe-Pt alloys is performed by a combination of in-situ neutron powder diffraction and thermal analysis. The dependence of ordering processes on the alloy composition and initial microstructure (homogeneous A1 phase or multilayer-type) is established. Through the use of mechanical alloying and subsequent heat treatment it has been possible to achieve the formation of chemically highly ordered L10 FePt and, in the case of the Fe-rich and Pt-rich compositions, L12 Fe3Pt and FePt3 phases, respectively. Whereas in Pt-rich alloys the decoupling effect of the FePt3 phase leads to coercivity improvement, in Fe-rich nanocomposites a peculiar nanometer scale multilayer structure gives rise to remanence enhancement due to large effects of exchange interactions between the crystallites of the phases. The structure, magnetic properties and magnetisation reversal processes of these alloys are investigated. Experimentally observed phenomena are understood on the basis of a simple two-particle interaction model. Neutron diffraction has also been used for the investigation of the magnetic structure of ordered and partially ordered nanocrystalline Fe-Pt alloys. It has been shown that the magnetic moment of Fe atoms in L10-type Fe Pt alloys is sensitive to the compositional order. The results are compared to density functional calculations.
3

Nanocrystalline Fe-Pt alloys: phase transformations, structure and magnetism

Lyubina, Julia 21 December 2006 (has links)
This work has been devoted to the study of phase transformations involving chemical ordering and magnetic properties evolution in bulk Fe-Pt alloys composed of nanometer-sized grains. A comprehensive study of phase transformations and ordering in Fe-Pt alloys is performed by a combination of in-situ neutron powder diffraction and thermal analysis. The dependence of ordering processes on the alloy composition and initial microstructure (homogeneous A1 phase or multilayer-type) is established. Through the use of mechanical alloying and subsequent heat treatment it has been possible to achieve the formation of chemically highly ordered L10 FePt and, in the case of the Fe-rich and Pt-rich compositions, L12 Fe3Pt and FePt3 phases, respectively. Whereas in Pt-rich alloys the decoupling effect of the FePt3 phase leads to coercivity improvement, in Fe-rich nanocomposites a peculiar nanometer scale multilayer structure gives rise to remanence enhancement due to large effects of exchange interactions between the crystallites of the phases. The structure, magnetic properties and magnetisation reversal processes of these alloys are investigated. Experimentally observed phenomena are understood on the basis of a simple two-particle interaction model. Neutron diffraction has also been used for the investigation of the magnetic structure of ordered and partially ordered nanocrystalline Fe-Pt alloys. It has been shown that the magnetic moment of Fe atoms in L10-type Fe Pt alloys is sensitive to the compositional order. The results are compared to density functional calculations.

Page generated in 0.0584 seconds