Spelling suggestions: "subject:"organ segmentation"" "subject:"argan segmentation""
1 |
Automated Kidney Segmentation in Magnetic Resonance Imaging using U-NetÖstling, Andreas January 2019 (has links)
Manual analysis of medical images such as magnetic resonance imaging (MRI) requires a trained professional, is time-consuming and results may vary between experts. We propose an automated method for kidney segmentation using a convolutional Neural Network (CNN) model based on the U-Net architecture. Investigations are done to compare segmentations between trained experts, inexperienced operators and the Neural Network model, showing near human expert level performance from the Neural Network. Stratified sampling is performed when selecting which subject volumes to perform manual segmentations on to create training data. Experiments are run to test the effectiveness of transfer learning and data augmentation and we show that one of the most important components of a successful machine learning pipeline is larger quantities of carefully annotated data for training.
|
2 |
Random Regression Forests for Fully Automatic Multi-Organ Localization in CT Images / Localisation automatique et multi-organes d'images scanner : utilisation de forêts d'arbres décisionnels (Random Regression Forests)Samarakoon, Prasad 30 September 2016 (has links)
La localisation d'un organe dans une image médicale en délimitant cet organe spécifique par rapport à une entité telle qu'une boite ou sphère englobante est appelée localisation d'organes. La localisation multi-organes a lieu lorsque plusieurs organes sont localisés simultanément. La localisation d'organes est l'une des étapes les plus cruciales qui est impliquée dans toutes les phases du traitement du patient à partir de la phase de diagnostic à la phase finale de suivi. L'utilisation de la technique d'apprentissage supervisé appelée forêts aléatoires (Random Forests) a montré des résultats très encourageants dans de nombreuses sous-disciplines de l'analyse d'images médicales. De même, Random Regression Forests (RRF), une spécialisation des forêts aléatoires pour la régression, ont produit des résultats de l'état de l'art pour la localisation automatique multi-organes.Bien que l'état de l'art des RRF montrent des résultats dans la localisation automatique de plusieurs organes, la nouveauté relative de cette méthode dans ce domaine soulève encore de nombreuses questions sur la façon d'optimiser ses paramètres pour une utilisation cohérente et efficace. Basé sur une connaissance approfondie des rouages des RRF, le premier objectif de cette thèse est de proposer une paramétrisation cohérente et automatique des RRF. Dans un second temps, nous étudions empiriquement l'hypothèse d'indépendance spatiale utilisée par RRF. Enfin, nous proposons une nouvelle spécialisation des RRF appelé "Light Random Regression Forests" pour améliorant l'empreinte mémoire et l'efficacité calculatoire. / Locating an organ in a medical image by bounding that particular organ with respect to an entity such as a bounding box or sphere is termed organ localization. Multi-organ localization takes place when multiple organs are localized simultaneously. Organ localization is one of the most crucial steps that is involved in all the phases of patient treatment starting from the diagnosis phase to the final follow-up phase. The use of the supervised machine learning technique called random forests has shown very encouraging results in many sub-disciplines of medical image analysis. Similarly, Random Regression Forests (RRF), a specialization of random forests for regression, have produced the state of the art results for fully automatic multi-organ localization.Although, RRF have produced state of the art results in multi-organ segmentation, the relative novelty of the method in this field still raises numerous questions about how to optimize its parameters for consistent and efficient usage. The first objective of this thesis is to acquire a thorough knowledge of the inner workings of RRF. After achieving the above mentioned goal, we proposed a consistent and automatic parametrization of RRF. Then, we empirically proved the spatial indenpendency hypothesis used by RRF. Finally, we proposed a novel RRF specialization called Light Random Regression Forests for multi-organ localization.
|
Page generated in 0.1009 seconds