• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 231
  • 86
  • 29
  • 20
  • 12
  • 12
  • 11
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 491
  • 491
  • 172
  • 145
  • 77
  • 76
  • 73
  • 70
  • 63
  • 62
  • 55
  • 43
  • 36
  • 35
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Hodnocení sekvestračního potenciálu vegetace/porostů rekultivovaných výsypek metodami DPZ / Assessment of the sequestration capacity of vegetation by remote sensing methods in areas of reclaimed mining dumps

PIKL, Miroslav January 2018 (has links)
The study aims at estimation and mapping the amount of carbon allocated in above ground biomass of wood and in organo-mineral soil horizon at sites where reclamation and spontaneous succession took place on spoil heaps after coal mining. Several categories of data have been used to meet the objectives, namely ground field measurements, laboratory analyses of soil samples, airborne hyperspectral data from VNIR region, and airborne LiDAR scanning data. The digital imagery analysis, GIS modeling and multivariation statistical methods were applied in data assessment. The results show that there is a 7 600 tons of carbon allocated in above ground wood biomass in the area of 209 ha, and 8 100?12 200 tons in the soil A horizon in the region of the same size. The results proofed: 1/ statistically significant negative relationships (p < 0,01) between slope and amount of soil carbon, where higher negative correlation was for broad leaved species; 2/ statistically significant difference (p < 0,05) between amount of soil carbon under broad leaved and needle classes and under different species, the highest between soils under Alnus sp. and Pinus sp.; 3/ statistically significant relationships (p < 0,05) between the amount of carbon allocated in the aboveground wood biomass and that in the soil A horizon under the needle leaved class and under the spontaneous wood vegetation.
232

THE FORESTRY RECLAMATION APPROACH: MEASURING SEDIMENT MASS ACCUMULATION RATES IN RECLAIMED MINE LANDS AND NATURALLY REGENERATED LOGGED FORESTS OF EASTERN KENTUCKY

Bond, William E. 01 January 2019 (has links)
The spread of surface coal mining has resulted in loss of forests in the Appalachian region. The Forestry Reclamation Approach (FRA) was developed to provide guidance for restoring forests on reclaimed mined land. This study hypothesizes that the FRA will result in larger magnitude of sediment accumulation rates in reclaimed mine sites compared to those reclaimed using grassland reclamation. Three sediment cores and six trenches were sampled within four reclaimed mined and three previously logged sites in eastern Kentucky. Samples were processed for radionuclides, grain-size, stable isotopes (δ13C), and POC. LIDAR data were used to identify valley fills, while historical aerial photography was used to identify changes in vegetative cover from 1994 to 2016. Radionuclide dating was used to determine sediment accumulation rates over the previous 100 years. Results from logged sites are inconclusive. δ13C data for all sites fall within the range expected for forested landscapes (C3), and do not show any transitions from grassland to forests. POC data indicates that inventories and fluxes were the same for mined and logged sites. Sediment accumulation rates for reclaimed mined lands show elevated values after the implementation of the FRA, compared to grassland reclamation, thus supporting the hypothesis for previously mined sites.
233

Effect of Foliage and Root Carbon Quantity, Quality, and Fluxes on Soil Organic Carbon Stabilization in Montane Aspen and Conifer Stands in Utah

Boča, Antra 01 May 2017 (has links)
Forest soils store as much carbon (C) as the vegetation that grows on them, and the carbon in soil is more stable than the C in biomass. Quaking aspen (Populus tremuloides Michx.) is the most widespread tree species in North America, and aspen forests in the Western US have been found to store more soil organic carbon (SOC) in the mineral soil than nearby conifers. Fire exclusion and grazing often promote the succession of aspen to conifer dominated forests due to their effect on aspen regeneration. So far the factors driving the differential SOC accumulation, and the effects of the vegetation shift on SOC pools, are not well understood. In this dissertation I aimed to evaluate how various forest vegetation characteristics – tree type, detritus fluxes, detritus chemistry – affect SOC pools and stability from a global to a molecular level using two contrasting forest types – aspen and conifer. A meta-analysis showed that, while conifer forests worldwide had higher C pools in the forest floor, this difference did not translate into the mineral soil, suggesting that the mechanisms that control SOC storage differ between both soil compartments. Above- and belowground detritus input fluxes were similar between aspen and conifer forests, and did not explain the higher SOC pools under aspen. A sorption study revealed that the more labile aspen foliage dissolved organic carbon (DOC) was more effectively retained in soil than aspen root, and conifer substrate DOC. Furthermore, soils that contained aspen SOC retained new DOC better than soils with conifer SOC, irrespective of the source of the DOC. Finally, foliage and root specific compounds that were identified for aspen and subalpine fir provide a base for future studies aiming to identify the source of SOC under both overstory types. Overall, the results of the dissertation suggest that substrate chemistry more than detritus fluxes drive the differences between SOC pools under aspen and conifer forests in Utah. This finding indicates that the link between C input amounts and SOC pools is not as direct as currently assumed in most SOC models. Furthermore, a tree species effect on SOC as distinct as aspen vs conifer is not common between all hardwood and conifer comparisons worldwide, thus suggesting that the effect of vegetation can be overridden by other factors.
234

Methods For Understanding Bacterial Metabolic Activity In Activated Sludge

Wos, Melissa Louise, n/a January 2005 (has links)
Biological wastewater treatment relies on the diverse and complex metabolic activities of bacteria to remove pollutants. Its success depends on the metabolic efficiency of the bacteria. Activated sludge models use parameters that attempt to depict bacterial growth and metabolic processes. However, current methods do not separate metabolic activity from growth and maintenance. As a result, activated sludge processes are misinterpreted or over-simplified. Alternative methods for gauging bacterial activity have been proposed and include the measurements of cellular derived compounds that relate specifically to energy cycling and include Nicotinamide Adenine Dinucleotide [NADH]. To date, NADH has been largely measured within activated sludge using commercial online fluorimeters with in situ probes. However, this current method provides a measure of the 'bulk' (raw) fluorescence within the system, resulting in difficulties when interpreting fluorescence data and poor sensitivity for detecting changes in intracellular [NADH]. This study has developed a more reliable method for estimating intracellular [NADH] and thus metabolic activity within activated sludge systems. Separating extracellular from intracellular [NADH] in samples was crucial because NADH was released and accumulates in the extracellular environment at a concentration of 200 ~M immediately following bacterial death or lysis. This concentration did not decline overtime. This not only caused high background fluorescence but also reduced the sensitivity of detection for changes in intracellular [NADH]. In particular, considerably higher [NADH] values to those from the extracellular suspensions were obtained following extraction of the intracellular material, suggesting that the cell membranes were not being penetrated by the excitable light source. Of the extraction procedures examined, filtration followed by extraction of the intracellular material with a hot Tris buffer was the most efficient and was recommended for accurate estimates of intracellular [NADH] in situ. In addition, standards were used to quantify NADH (moles per cell and/or unit volume) from unknown samples. The limits of detection were found to be 1.058 - 353 uM, whereas concentrations above 353 jAM self-quenched. Sample concentrations were always within these limits of detection. Hence, the sensitivity, reliability and experimental application of the original method was improved upon and able to be used for the direct measurement of microbial metabolic activity, something that has not been demonstrated before now. This study found that bacteria have between 106~ I 08 NADH molecules per cell depending on their metabolic state. A highly metabolically active bacterial cell had between 1O6~ tO7 NADH molecules, while a less active bacterial cell had between to7 -to8 NADH molecules. These measurements of metabolic activity were simultaneously monitored alongside other measures of bacterial growth, such as the incorporation of radiolabelled thymidine into DNA as a direct measure of DNA replication (new cell synthesis), the incorporation of radiolabelled leucine into protein as a direct measure of protein synthesis, oxygen uptake rates (OUR) as a direct measure of respiration, ATP as a measure of potential energy and dissolved organic carbon (DOC) as a measure of substrate assimilation. As OUR deceased, bacterial growth (using both the thymidine and leucine assays), specific [NADH] and specific [ATP] increased. High OUR and substrate oxidation rates simultaneous with low specific [NADH] indicated high rates of electron transport and thus efficient metabolic activity. Also, low OUR and substrate oxidation rates simultaneous with high specific [NADHI indicated inefficient rates of electron transport, therefore inhibiting oxidative phosphorylation (ATP production). A lack of oxygen as the terminal electron acceptor did not efficiently reoxidise NADH to NAD and resulted in an accumulation of NADH within the cell. Thus, a measure of low specific [NADHI was linked to the efficient rate of reoxidation of NADH to NAD* and reflects high metabolic efficiency. DNA and protein syntheses were coupled following substrate enrichment (glucose or acetate), indicating that bacteria were in balanced growth. However, DNA and protein syntheses became uncoupled once substrate was depleted, indicating unbalanced growth. An average Leu:TdR ratio of 7.4 was determined for activated sludge and was comparable to values published from marine systems. This ratio increased during log growth phase and decreased during stationary growth phases. Specific growth rates determined using the [3HITdR and [3H]Leu assay yielded values ranging from 2 - 10.5 d' and from 2.5 - 6 d1, respectively and were comparable to published values. Changes in OUR, NADH, ATE', DNA replication and protein synthesis were statistically ordinated using multidimensional scaling, and changes (in magnitude and direction) in bacterial metabolic activity were observed. Such methods enable the tracing of where bacteria divert their energies, such as to growth or maintenance and thus provide a greater understanding of bacterial behaviour in activated sludge. While studying anoxic and anaerobic conditions were beyond the scope of this work, the use of such methods to monitor bacterial metabolic activity under such conditions is warranted.
235

Bacterial use of allochthonous organic carbon for respiration and growth in boreal freshwater systems

Berggren, Martin January 2009 (has links)
Aquatic systems worldwide receive large amounts of organic carbon from terrestrial sources. This ‘allochthonous’ organic carbon (AlloOC) affects critical physical and chemical properties of freshwater ecosystems, with consequences for food web structures and exchange of greenhouse gases with the atmosphere. In the boreal region, loadings of AlloOC are particularly high due to leaching from huge organic deposits in boreal forest, mire and tundra soils. A main process of AlloOC turnover in aquatic systems is its use by heterotrophic bacteria. Applying a bioassay approach, I measured the respiration and growth (production) of bacteria in northern Sweden, in streams and lakes almost totally dominated by AlloOC. The objective was to elucidate how variations in AlloOC source, age, composition and concentration impact on its use by aquatic bacteria, and how AlloOC properties, in turn, are regulated by landscape composition and by hydrology. The bacterial respiration (30-309 µg C L-1 d-1) was roughly proportional to the concentration of AlloOC (7-47 mg C L-1), but not significantly related to AlloOC source or character. Bacterial production (4-94 µg C L-1 d-1), on the other hand, was coupled to the AlloOC character, rather than concentration. A strong coupling to AlloOC character was also found for bacterial growth efficiency (0.06-0.51), i.e. production per unit of assimilated carbon. Bacterial production and growth efficiency increased with rising concentrations of low molecular weight AlloOC (carboxylic acids, free amino acids and simple carbohydrates). While the total AlloOC concentrations generally were the highest in mire-dominated catchments, low molecular weight AlloOC concentrations were much higher in forested catchments, compared to mire-dominated. These patterns were reflected in a strong landscape control of aquatic bacterial metabolism. Moreover, high flow episodes increased the export of organic carbon from forests, in relation to the export from mires, stimulating the bacterial production and growth efficiency in streams with mixed (forest and mire) catchments. The potential of AlloOC to support efficient bacterial growth decreased on time-scales of weeks to months, as the AlloOC was aged in laboratory or lake in situ conditions. To conclude, landscape, hydrology and conditions which determine AlloOC age have large influence on bacterial metabolism in boreal aquatic systems. Considering the role of bacteria in heterotrophic food chains, these factors can have spin-off effects on the structure and function of boreal aquatic ecosystems.
236

Water quality modeling based on landscape analysis: importance of riparian hydrology

Grabs, Thomas January 2010 (has links)
Several studies in high-latitude catchments have demonstrated the importance of near-stream riparian zones as hydrogeochemical hotspots with a substantial influence on stream chemistry. An adequate representation of the spatial variability of riparian-zone processes and characteristics is the key for modeling spatio-temporal variations of stream-water quality. This thesis contributes to current knowledge by refining landscape-analysis techniques to describe riparian zones and by introducing a conceptual framework to quantify solute exports from riparian zones. The utility of the suggested concepts is evaluated based on an extensive set of hydrometric and chemical data comprising measurements of streamflow, groundwater levels, soil-water chemistry and stream chemistry. Standard routines to analyze digital elevation models that are offered by current geographical information systems have been of very limited use for deriving hydrologically meaningful terrain indices for riparian zones. A model-based approach for hydrological landscape analysis is outlined, which, by explicitly simulating groundwater levels, allows better predictions of saturated areas compared to standard routines. Moreover, a novel algorithm is presented for distinguishing between left and right stream sides, which is a fundamental prerequisite for characterizing riparian zones through landscape analysis. The new algorithm was used to derive terrain indices from a high-resolution LiDAR digital elevation model. By combining these terrain indices with detailed hydrogeochemical measurements from a riparian observatory, it was possible to upscale the measured attributes and to subsequently characterize the variation of total organic-carbon exports from riparian zones in a boreal catchment in Northern Sweden. Riparian zones were recognized as highly heterogeneous landscape elements. Organic-rich riparian zones were found to be hotspots influencing temporal trends in stream-water organic carbon while spatial variations of organic carbon in streams were attributed to the arrangement of organic-poor and organic-rich riparian zones along the streams. These insights were integrated into a parsimonious modeling approach. An analytical solution of the model equations is presented, which provides a physical basis for commonly used power-law streamflow-load relations. / At the time of doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: In press; Paper 4: Manuscript. / Swedish Research Council (VR, grant no. 2005-4289)
237

Asessing microbial community dynamics and carbon mineralization with depth across an eroded agricultural landscape at St. Denis National Wildlife Area

2013 June 1900 (has links)
Recent work has demonstrated that vast amounts of soil organic carbon (SOC) are redistributed and buried within Canadian croplands; however, the effects of redistribution on SOC dynamics and biological properties of the soil environment remain unknown. Because soil microorganisms are drivers of carbon (C) turnover in soil, the effects of such processes on microbial community dynamics are important in assessing the overall effects of redistribution and the stability of displaced C. This is particularly important in the face of future climate change scenarios and potential disturbances. The objectives of this study were to examine microbial community dynamics with depth and among landscape positions in an eroded landscape, and to assess C mineralization response between surface and subsurface soil layers in a depositional position. Microbial abundance was highly influenced by SOC redistribution. This was most evident in the buried backslope position where substantial soil and SOC deposition had occurred, creating a very thick A horizon (ca. 80 cm). Phospholipid fatty acid (PLFA) analysis revealed substantial concentrations of microbial biomass located at depth (30-60 cm), which was greater than PLFA concentration at the soil surface and correlated with SOC concentration. Community structure analysis demonstrated the strong influence of landscape position and depth in structuring microbial communities near the soil surface (0-20 cm). Communities in positions that were predominantly erosional were the most different from those in the depositional position, accounting for the largest amount of variation (60%) in the overall analysis. The existence of distinct microbial communities found in depositional material (0-25 cm) and within the buried A horizon (30-80 cm) in the buried backslope position indicate a strong influence of depth and redistribution in structuring microbial communities. The existence of significant viable biomass in the buried A horizon of the depositional position leads to question the persistence of highly concentrated, buried SOC over many decades. When soils from surface (0-5 and 20-25 cm) and subsurface (40-45 and 65-70 cm) depths were incubated in surface-like conditions, greater mineralization response in surface relative to subsurface soils, despite relatively similar SOC concentration, suggests that redistribution protects buried C from decomposition. Distinct microbial communities found at the onset and completion of the mineralization study between surface and subsurface soil layers may indicate the influence of microbial community structure on mineralization response. Depth was the largest source of variation in microbial community structure, and although a shift occurred after exposure to incubation conditions, the effect of depth remained the strongest influence. This work indicates that SOC redistribution strongly influences microbial abundance and community structure development, primarily driven by altered substrate gradients occurring with depth, and suggests that C is less susceptible to decomposition once buried in depositional positions.
238

Land use and land cover change: the effects of woody plant encroachment and prescribed fire on biodiversity and ecosystem carbon dynamics in a southern great plains mixed grass savanna

Hollister, Emily Brooke 15 May 2009 (has links)
In the southern Great Plains, the encroachment of grassland ecosystems by mesquite (Prosopis glandulosa), is widespread, and prescribed fire is commonly used in its control. Despite this, substantial quantitative information concerning their influences on the community composition, functional dynamics, and soil organic carbon (SOC) storage potential of grassland ecosystems is lacking. The objectives of this study were to: a) quantify the effects of seasonal prescribed fire treatments and mesquite encroachment on aboveground net primary productivity (ANPP) and herbaceous community composition; b) characterize SOC pool sizes, turnover, and storage potential relative to vegetation type and fire treatment; c) evaluate the structure and diversity of soil microbial communities relative to vegetation type; and d) characterize the functional diversity of these same microbes using the GeoChip functional gene microarray. Repeated winter and summer fires led to increased ANPP rates (average, 434 and 313 g m-2 y-1, respectively), relative to unburned controls (average, 238 g m-2 y-1), altered herbaceous community composition, and increased the storage of resistant forms of SOC, but did not affect overall SOC storage. Herbaceous ANPP rates did not differ significantly as a result of mesquite encroachment, but herbaceous community composition and SOC storage did. Mesquite soils contained significantly more total, slow-turnover, and resistant forms of SOC than those that occurred beneath C3 or C4 grasses. Similarity among the soil bacterial and fungal communities associated with the major vegetation types in this system was low to moderate. Significant differences were detected among soil fungi, with the mesquite-associated fungi harboring significant differences in community structure relative to the fungal communities associated with each of the other vegetation types examined. Despite this result, few significant differences were detected with respect to the functional diversity of these communities, suggesting either a high degree of functional redundancy, or that the functional differences harbored by these communities are beyond the scope of the GeoChip. The results of this study demonstrate that both fire and mesquite encroachment have the potential to alter ecosystem components and processes significantly, providing new insight regarding the effects of these widespread land use and land cover changes on ecosystem structure and function.
239

Distribution of Dissolved and Particulate Organic Carbon, Nitrogen and Phosphorus in the South China Sea and the Taiwan Strait

Liu, Ching-Lin 24 July 2001 (has links)
Abstract The South China Sea (SCS) is the largest marginal sea in the world and connects with the East China Sea (ECS) through the Taiwan Strait (TS). This study investigates the distribution and biogeochemical behavior of both particulate and dissolved organic matter in the SCS and the TS based on samples collected on several cruises of the R/V Ocean Researchers I and III. Dissolved inorganic nitrogen and phosphorus (DIN and DIP), particulate organic carbon and nitrogen (POC and PON) as well as dissolved organic nitrogen and phosphorus (DON and DOP) concentrations were determined. Concentrations of DON and DOP in the SCS are in the range of 1.2-9.9 mMN and 0.04-0.21 mMP, respectively. The surface DON concentration is the highest in the northern SCS, whereas it is the lowest in the southern part. The DOP does not show a similar trend. DON and DOP concentrations all decrease with depth but increase slightly near the bottom, perhaps on account of sediment resuspension. Because of the preferential degradation of DOP over DON, the maximum concentration of DOP appears at a shallower depth than that of DON. Approximately 11 % and 2 % of DIN and DIP respectively are attributed to the degradation of DON and DOP above 500 m in the SCS. Concentrations of POC and PON in the SCS are in the range of 1.06-2.84 mMC and 0.07-0.36 mMN, respectively. The distributions of POC and PON show similar patterns with a correlation coefficient of 0.97. The concentrations of these are the highest at the surface layer, decrease with depth, but then increase slightly near the bottom, perhaps again because of resuspension of the bottom sediments. The ratio of PON/POC is 0.138 in the euphotic zone, a value close to the Redfield ratio of 0.15. In the TS and the adjacent coastal zones, the effect of terrestrial input is obvious and results in higher POC, PON, DON and DOP nearshore. Ranges of these concentrations are 0.06-59.6 mMN, 0.01-1.29 mMP, 3.80-57.1 mMC and 0.19-3.4 mMN, respectively. There was an attempt to use the one-dimensional diffusion-advection model to estimate the DIN and DIP production rates and the DON and DOP consumption rates over the depth range of 900-2500 m. These values are, respectively, 0.036, 0.006, 0.021 and 0.002 mmol/kg/yr.
240

Removal of trihalomethanes precursors from surface waters typical for Canadian prairie and shield

Sadrnourmohamadi, Mehrnaz January 2015 (has links)
Many Canadian water treatment plants supplied by surface waters of the Canadian Prairie and Shield have elevated concentrations of trihalomethanes (THMs), which exceed the provincial standards. These water sources are characterized by elevated levels of dissolved organic carbon (DOC) and varying levels of calcium hardness, which causes a challenge for the removal of THMs precursors. The objective of this study was to investigate the effect of two treatment methods: chemical coagulation and pre-ozonation-coagulation on the removal of DOC as the main THMs precursor. Surface waters typical for the Canadian Prairie and Canadian Shield were used in the experiments which includes Assiniboine River, Red River, and Rainy River. The effects of different experimental conditions such as coagulant dose, coagulant type, and solution pH as well as ozone dosage on THMs removal were investigated. The structural and chemical characteristics of natural organic matter and isolated humic substances, before and after the reaction with ozone, were studied using spectroscopic techniques. The results illustrated that the quality of source water (DOC characteristics, concentration of water DOC and Calcium) has a significant impact on THMs reduction by chemical coagulation and ozonation. Coagulation results showed that reduction of total DOC does not guarantee THMFP reduction and chemical coagulation should be optimized to remove the hydrophobic acid fraction which forms most THMs. The removal of DOC by aluminum-based coagulants was affected more by the concentration of polymeric and colloidal aluminum speciation. This finding is especially important for plants supplied by high alkalinity waters where pH adjustment is a serious challenge. The effect of pre-ozonation on coagulation varies depending on the concentration of calcium, which has the ability to form complexes with DOC compounds promoting their removal in coagulation. For the surface water with high levels of organic carbon and calcium hardness, ozonation prior to coagulation was beneficial in terms of DOC reduction. However, it showed the opposite effect on water with high levels of DOC accompanied with low level of calcium hardness. Spectroscopic results showed that ozonation of NOM and humic substances cause a significant reduction of aromatic and highly conjugated compounds (constituting primarily the hydrophobic acid fraction). / February 2016

Page generated in 0.1333 seconds