• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 231
  • 86
  • 29
  • 20
  • 12
  • 12
  • 11
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 491
  • 491
  • 172
  • 145
  • 77
  • 76
  • 73
  • 70
  • 63
  • 62
  • 55
  • 43
  • 36
  • 35
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Organiskt kol och potentiell metanproduktion i sediment från Alboránsjön / Organic carbon and potential methane production in sediments from the Alborán Sea

Karlsson, Marianne January 2022 (has links)
Metan, en gas som är vida studerad i klimatsammanhang på grund av dess egenskaper som växthusgas och energikälla, har i denna studie fått uppmärksamhet i annan kontext i form av potentiell riskfaktor för tsunamin. I en samlad brittisk rapport från år 2009 har ett flertal studier pekat på möjliga faktorer som kan bidra till instabila sjö- och havsbottnar vilka har resulterat i undervattensskred med tsunami som följd. En av faktorerna anses bero på ett ökat gasflöde i sedimenten varför metan med sin stora reservoar i sediment fått ett ökat fokus i forskarvärlden. Alboránsjöns sediment vittnar om historiska massrörelser och med befolkade kuststräckor som ligger i riskzonen för att drabbas av inkommande vattenmassor är undersökning i detta område relevant för utveckling av vidare riskhantering. Syftet med studien var att utifrån mängd uppmätt organiskt kol i sediment modellera potentiell metanproduktion med nuvarande förutsättningar men även kopplat till klimatförändringar. Studien är en del av ett större projekt som bedrivs i samarbete mellan Linnéuniversitetet i Kalmar och Sorbonne universitetet i Paris.   Sediment från södra delen av Alboránsjön analyserades genom att använda glödningsförlust som metod i samband mätning av organiskt material samt Van Bemmelns faktor för omräkning till organiskt kol. För modellering av potentiell metanproduktion användes mjukvaran BioGeoChem. Metanhalten jämfördes med uppmätta sulfatvärden från platsen. Resultaten visade på andel organiskt kol mellan 4,6 – 5,7% i de översta sedimentlagren med en över lag nedåtgående trend i samband med djup. Modelleringen visade på ett samband mellan organiskt kol metanproduktion, med en högre andel metan i provpunkter med högre andel organiskt kol. Vid en modellerad ökning av vattentemperatur kopplat till klimatförändringar visade resultatet en minskning av metanproduktionen, vilket skulle betyda att en ökning med 4oCi detta sammanhang inte skulle innebära någon ökad risk för instabil botten. Organiskt kol är inte den enda parametern som styr metanproduktionen i sediment och därför behöver fler faktorer undersökas samtidigt för att få en komplett helhetsbild om och i så fall på vilket sätt metan skulle kunna vara en bidragande orsak till undervattensskred och tsunami. / Methane, a gas that is widely studied in the climate context due to its properties as a greenhouse gas and as an energy source, has in this study received attention in another context in the form of potential risk factor for tsunami. In a british report from 2009, several studies have pointed out factors that can contribute to unstable sediments in the deep sea and wish have resulted in underwater landslides and tsunami. One of the factors is thought to be due to an increased gas flow in the sediments, which is why methane with its large reservoir in sediments has gained an increased focus in the research community. The sediments of the Alborán Sea testify to historical mass movements and with populated stretches of coastline that are at risk of being hit by incoming water masses, exploration in this area is relevant for the development of further risk management. The purpose of the study was to model potential methane production with current conditions, but also linked to climate change, based on the amount of measured organic carbon in sediments. The study is a part of a larger project conducted in collaboration between Linnaeus University in Kalmar and Sorbonne University in Paris.   Sediments from the southern part of the Alborán Sea were analyzed by using loss on ignition as a method to measure the content of organic matter as well as Van Bemmeln's factor for the conversion to organic carbon. For modeling potential methane production, the Software BioGeoChem was used. The methane content was even compared with measured sulphate values from the site. The results showed the proportion of organic carbon between 4.6 – 5.7% in the upper sediment layers with an overall downward trend associated with depth. The modeling showed a correlation between organic carbon and methane production, with a higher proportion of methane in sample points with a higher proportion of organic carbon. At a modeled increase in water temperature linked to climate change, the results showed a decrease in methane production, which would mean that an increase of 4oC in this context would not pose any increased risk of unstable sediment. Organic carbon is not the only parameter that controls methane production in sediments and therefore more factors need to be investigated at the same time to get a complete overall picture of whether methane could be a contributing cause of submarine landslides and tsunami.
192

Factores y procesos pedogenéticos que regulan el almacenamiento de carbono orgánico en suelos de la pampa austral

Bravo, Oscar Abel 13 October 2013 (has links)
En los últimos 150 años la humanidad incrementó la emisión de CO2, acelerando el calentamiento atmosférico global. La retención de carbono orgánico en los suelos (COS) mitiga dicho efecto y contribuye a mejorar la calidad del recurso. Los factores que regulan el COS pueden analizarse desde la perspectiva pedológica utilizando la ecuación de estado, que postula que modificaciones en los factores formadores (FF) producirán variaciones en los procesos pedogenéticos (PP) y cambios en las propiedades de los suelos. Los objetivos de la presente tesis fueron: i) Cuantificar los niveles de COS en regiones geográficas homogéneas y establecer su variación a través del paisaje; ii) Evaluar efectos por cambio en la condición climática sobre COS en suelos de granulométrica homogénea y similar relieve; iii) Establecer efectos sobre COS por cambios en los materiales parentales (MP) en condiciones análogas de relieve y clima; iiii) Determinar la acción antrópica por diferentes usos de la tierra e intensidades de uso agrícola. El área de estudio se ubicó en la Pampa Austral, abarcando 110 perfiles en los que se evaluaron 15 variables de sitio, morfológicas, físicas, químicas, biológicas y taxonómicas. Los resultados indicaron que el relieve fue el FF de mayor influencia sobre COS y que la incidencia del resto de los FF varió en función del mismo. Las llanuras de inundación presentaron los más altos contenidos de COS, superando a los valles interserranos y paleocauces, seguidos de planos normales o cóncavos, lomadas y laderas. El análisis jerárquico permitió una mayor comprensión de los FF, PP y mejor predicción del COS. El clima ejerce una acción positiva afectada por el relieve y el MP. En suelos de sedimentos loéssicos y en planos normales la precipitación media anual y la profundidad efectiva en conjunto explicaron un 49 % de la variabilidad del COS (P <0,01). Los MP ejercieron influencia regional sobre COS (r= 0,28, P <0,05, N= 110), aún con la interferencia de otros FF. Los sedimentos aluviales presentaron elevados niveles de COS (171 Mg ha-1), seguido por los sedimentos loéssicos (108 Mg ha-1) y sedimentos eólicos recientes (81 Mg ha-1). El uso produjo cambios en el carbono de 0-25 cm y en el carbono orgánico de 0-1 m. El uso forestal mostró los más altos contenidos de CO0-25 en todos los materiales parentales. La intensidad del uso impactó de manera diferencial sobre el COS en función de la granulometría. Bajo agricultura extractiva los suelos de texturas gruesas presentaron mermas del 60 % en CO. La inclusión de siembra directa y pasturas puede lograr retenciones de 0,7 Mg ha-1 año-1. Se ha demostrado que el relieve es el FF que regula los niveles de COS de la región, modificando el balance de los PP. COS mostró respuesta a la intensidad de la melanización. Los PP modificaron su relación en función de la profundidad efectiva: los suelos someros presentaron melanización intensa, mientras que los suelos profundos redujeron la misma a favor de la iluviación o la alcalinización. La clasificación taxonómica a nivel de familia reflejó claramente los principales FF y PP que ocurren en la Pampa Austral. Las taxas de suelos segregadas y los contenidos de carbono orgánico presentaron una fuerte asociación, lográndose a partir de ellas una mayor certidumbre en la explicación de la variabilidad del COS. Palabras claves: Carbono orgánico del suelo, factores formadores, procesos pedogenéticos, usos del suelo, retención de carbono, Pampa Austral. / Human activity increased CO2 emissions in the last 150 years, accelerating global atmospheric warming. Soil organic carbon storage (SOC) mitigates warming and helps to improving soil quality. Factors that regulate SOC can be analyzed from the pedological approach using the equation of state factors, says changes in the soil forming factors (FF) and their interactions produce variations in pedogenic processes (PP) and changes in soil properties. The objectives of this thesis were: i) measure SOC levels in homogeneous geographic region and analyzing variability across landscape; ii) measure effects of change climatic condition of SOC in soils with similar parent material (PM) and relief; iii) quantify effects on SOC for changes in PM to similar conditions of relief and climate; iiii) determine antropic effects by different land uses and management practices. The study area was located in Austral Pampa, using 110 soil profiles in which 15 site, morphological, physical, chemical, biological and taxonomic variables were evaluated. Results indicated that relief was the most influential FF on SOC, and the incidence of the remaining FF varied according to the same. Flood-plains showed the highest SOC level, followed by saw-valleys and paleo-valleys, normal flats, concave flats, hills and slopes. Hierarchical analysis showed greater understanding of the FF, PP and better prediction of SOC. The climate has a positive effect modified by relief and PM. In soils of loess sediments located in normal flats annual average rainfall and the effective depth explained 49% of the SOC variability (P <0.01). PM presented a regional effect on COS (r = 0.28, P <0.05, N= 110), despite the interference from other FF. Alluvial sediments showed high COS levels (171 Mg ha-1) followed by loess sediments (108 Mg ha-1) and recent aeolian sediments (81 Mg ha-1). Land use produced changes in 0-25 cm and 0-1 m organic carbon. Forest use showed the highest organic carbon content in 0-25 cm on all parent materials. Tillage systems and management practices impacted differently on the SOC in relation to soil texture. Intensive farming in coarse soils showed declines of 60% in CO. No-tillage and pasture showed retention rates of 0.7 Mg ha-1 yr-1. Relief is the main FF regulating COS levels in the region and the balance of the PP, and responded to intensity of melanization. PP changed their relationship as a function of effective depth: shallow soils showed intense melanization, whereas deep soils reduced melanization in favor of illuviation or alkalinization. Soil Taxonomy family level reflected clearly the main FF and PP occurring in the Austral Pampa. Soil taxas segregated and organic carbon contents showed a strong association, improving the explanation of SOC variability. Keywords: Soil organic carbon, soil forming factors, pedogenetic processes, land use, carbon retention, Austral Pampa.
193

Spatial Relationships Between Potential Bioavailable Organic Carbon and Sediment Grain Size at a Chlorinated Solvent-Contaminated Site

Boncal, Janelle Elizabeth 27 April 2011 (has links)
Chlorinated ethenes are considered one of the most prevalent sources of groundwater contamination in developed countries. Natural attenuation of chlorinated ethenes is possible through the process of microbial reductive dechlorination. Reductive dechlorination can occur in contaminated aquifers where there are sufficient amounts of organic carbon and reducing redox conditions to support dechlorinating microorganisms. Natural organic carbon (NOC) from dissolved aquifer sediment is thought to be the source of fermentable compounds needed to produce molecular hydrogen that functions as the primary electron donor for reductive dechlorination. Therefore, in an anaerobic aquifer, the production of molecular hydrogen from the fermentation of NOC drives the reductive dechlorination process. The variability and distribution of potential bioavailable organic carbon (PBOC) at a site is relatively unknown and any potential relationships between PBOC and the physical properties of the aquifer sediment have not been evaluated. Exploring relationships between the grain size of aquifer sediment PBOC may help to determine the feasibility of natural attenuation as a long-term remediation strategy at chlorinated ethene-contaminated sites. Because hydraulic conductivity is directly related to aquifer sediment grain size, zones of high hydraulic conductivity may promote greater microbial activity or biodegradation because of the increased availability of PBOC and nutrient flux. To determine potential relationships between PBOC and aquifer sediment grain size, two experiments were performed. PBOC was measured for 106 sediment samples impacted by chlorinated solvent contamination from an anaerobic type II site through a multiple liquid extraction process (Rectanus et al. 2007). Grain size distributions for each of the 106 sediment samples were determined by conducting sieve analyses. The results of both experiments were compared to explore relationships between PBOC and sediment grain size and to evaluate spatial distribution of both in the surficial aquifer. / Master of Science
194

Characteristics and Treatment of Landfill Leachate and Optimization of Leachate Oxidation with Fenton's Reagent

Gulati, Loveenia 17 June 2010 (has links)
The purpose of this study was to characterize the leachate from a landfill in Pennsylvania that had been pretreated by activated sludge and propose the most efficient treatment for this effluent. These samples had been pretreated in a sequencing batch reactor that also was operated to remove nitrogen by nitrification/denitrification. The SBR samples were found to have low BOD, high COD, high TOC and a very low BOD/COD ratio. These SBR decant samples have poor UV transmittance and hence quench UV light. Five treatment methods were evaluated, coagulation, ultrafiltration, combined coagulation/ultrafiltration, combined ultrafiltration/oxidation and combined filtration/fentons. These processes were tested for their ability to remove BOD and TOC and also to evaluate the improvement in UV transmittance. It was found that coagulation; Ultrafiltration and Ultrafiltration combined with coagulation do not work in improving the transmittance properties though there is a significant BOD and TOC removal with these processes. Ultrafiltration combined with oxidation was found to work the best in terms of TOC removal. In this study, four oxidants, KMnO?, H?O?, NaOCl and Fenton's reagent were used. It was observed that Fenton's reagent was capable of removing 90% TOC at a dose of 1g/L each of iron salt and hydrogen peroxide at a pH of 4.5. Since Fentons reagent was found to be the most effective method, hence, efforts were made to optimize the oxidation process with Fenton's. The two parameters which were studied were the initial pH and the chemical dosage. The initial pH was varied from a value of 2.5 to 6.5. The range of iron salt and peroxide dose used was from 0.05 to 0.1 g/L. Additional studies were conducted using samples filtered through a 0.45 um filter and oxidized with Fenton's reagent. The Fenton's process for oxidation of filtrates from the 0.45?m filter was also optimized with respect to pH and chemical dosage to determine the most economical operating conditions. The maximum transmittance of 57% was obtained for an iron dose of 0.075 g/L and a peroxide dose of 0.075 g/L at a pH of 4.5. This is in comparison to the transmittance of unoxidized 1K ultrafiltrate which was found to be 21.5%. There was a significant difference in the performance of 1K and 0.45um filtrates in terms of TOC removal and percentage transmittance. The oxidation process for improving the UV transmittance of leachate can therefore be economically optimized depending upon the desired efficiency by varying the operational parameters. / Master of Science
195

Removal of dissolved organic carbon and organic halide precursors by enhanced coagulation

Hargette, Paul Hudson 25 August 2008 (has links)
Raw water samples from nine utilities were received, and water-quality analyses, bench-scale water treatment, and chlorination were performed to determine the effectiveness of enhanced coagulation at removal of dissolved organic carbon (DOC) and organic halide precursors. Bench-scale treatment included: 1) baseline treatment, defined as the coagulant dose and pH at which the specific utility's water treatment plant was operating on the day the samples were collected, and 2) enhanced treatment, which was determined on the basis of bench-scale studies. Enhanced treatment is defined in the proposed Disinfectant/Disinfection By-Products (D/DBP) Rule as the coagulant dose at which a 10 mg/L increase in coagulant dose does not produce greater than a 0.3 mg/L decrease in dissolved organic carbon (DOC) or total organic carbon (TOC) concentration over the previous dose (Federal Register 1994). The treated samples were then chlorinated and analyzed for disinfection by-products (DBPs), including trihalomethanes (THMs) and non-purgeable dissolved organic halides (NPDOX). Specific objectives included: 1) an evaluation of the effectiveness of enhanced coagulation for TOC reduction, 2) determination of the effectiveness of surrogate parameters: such as raw water DOC and specific ultraviolet absorbance (SUVA); for predicting TOC removal by enhanced coagulation, and 3) determination of the relationship between DOC and NPDOX concentration in raw and treated waters. For all of the utilities, enhanced coagulation was effective at meeting the proposed TOC removal requirements contained in the D/DBP Rule, which range from 20 percent to 50 percent removal based on the alkalinity and TOC of the raw water. Raw water SUVA was the best indicator of the expected Toe removal by enhanced coagulation, with raw water SUVA values > 3.0 L/mg-m typically indicating greater TOC removal. Organic content was a good indicator of DBP formation. The average non-purgeable dissolved organic halogen formation potential (NPDOXFP) yields, based on DOC, were 155 μg as Cl⁻/mg DOC for raw water samples and ranged from 110- 138 μg as CI⁻/mg DOC for treated water samples. / Master of Science
196

The Influence of Urban Soil Rehabilitation on Soil Carbon Dynamics, Greenhouse Gas Emission, and Stormwater Mitigation

Chen, Yujuan 09 August 2013 (has links)
Global urbanization has resulted in rapidly increased urban land. Soils are the foundation that supports plant growth and human activities in urban areas. Furthermore, urban soils have potential to provide a carbon sink to mitigate greenhouse gas emission and climate change. However, typical urban land development practices including vegetation clearing, topsoil removal, stockpiling, compaction, grading and building result in degraded soils. In this work, we evaluated an urban soil rehabilitation technique that includes compost incorporation to a 60-cm depth via deep tillage followed by more typical topsoil replacement. Our objectives were to assess the change in soil physical characteristics, soil carbon sequestration, greenhouse gas emissions, and stormwater mitigation after both typical urban land development practices and post-development rehabilitation. We found typical urban land development practices altered soil properties dramatically including increasing bulk density, decreasing aggregation and decreasing soil permeability. In the surface soils, construction activities broke macroaggregates into smaller fractions leading to carbon loss, even in the most stable mineral-bound carbon pool. We evaluated the effects of the soil rehabilitation technique under study, profile rebuilding, on soils exposed to these typical land development practices. Profile rebuilding incorporates compost amendment and deep tillage to address subsoil compaction. In the subsurface soils, profile rebuilding increased carbon storage in available and aggregate-protected carbon pools and microbial biomass which could partially offset soil carbon loss resulting from land development. Yet, urban soil rehabilitation increased greenhouse gas emissions while typical land development resulted in similar greenhouse gas emissions compared to undisturbed soils. Additionally, rehabilitated soils had higher saturated soil hydraulic conductivity in subsurface soils compared to other practices which could help mitigate stormwater runoff in urban areas. In our study, we found urban soil management practices can have a significant impact on urban ecosystem service provision. However, broader study integrating urban soil management practices with other ecosystem elements, such as vegetation, will help further develop effective strategies for sustainable cities. / Ph. D.
197

Treatment of Landfill leachates using anion exchange resins

Pathak, Sudhir Kumar 12 June 2013 (has links)
Landfill leachates are often discharged to wastewater treatment plants (WWTPs) but their highly varied composition makes their treatment in WWTPs difficult. Landfill leachates contain bio-refractory organic matter which easily passes the biological treatment processes at WWTPs and increases the organic matter in the effluent. Leachates also interfere with the UV disinfection process at treatment plants. Another concern is the presence of large amounts of bio-refractory organic nitrogen in the leachates which makes it difficult for WWTPs to meet the tightening total nitrogen requirements. Studies were conducted to evaluate the applicability of anion exchange resins to remove organic matter, UV quenching substance and organic nitrogen from landfill leachates. Leachate samples based on varying age and treatment methods were utilized. The anion exchange resins were found to work effectively for all studied leachates. The resins were found to remove more bio-refractory UV absorbing substances as compared to total organic carbon (TOC), suggesting that anion exchange resins could be employed for removal of UV absorbing substances. Multiple regenerations of the resin showed slight loss in the capacity to remove UV and organic carbon. Fractionation of leachate samples showed effective removal of humic acid (HA) fraction which is responsible for most of UV quenching. The resin was also found to effectively remove the bio-refractory hydrophilic (Hpi) fraction which tends to persist even after HA fraction has bio-degraded. Membrane filtration (1000 Da and 3000 Da Molecular weight cut off) in conjunction with ion exchange resins achieved better removal of organic matter and UV254 absorbing substances. In addition, this also significantly improved the performance of resins. Significant removal of organic nitrogen was also observed using anion exchange though it was less than both UV and TOC. Around 80% removal of organic nitrogen associated with bio-refractory Hpi fraction was achieved using anion exchange suggesting ion exchange as a viable alternative for removing organic nitrogen. / Master of Science
198

Comparison of Techniques for Estimation of Forest Soil Carbon

Amichev, Beyhan Y. 01 May 2003 (has links)
Soil organic carbon represents the largest constituent of the global C pool and carbon budgets are studied by researchers and modelers in C cycling, global climate change, and soil quality studies. Pedon and soil interpretation record databases are used with soil and ecological maps to estimate regional SOC even though these databases are rarely complete for surface litter and mineral subsurface horizons. The first main objective of the project is to improve the ability to produce soil organic carbon estimates from existing spatial soils datasets, such as STATSGO. All records in the STATSGO Layer table that were incomplete or appeared to be incorrectly filled with a null or zero value were considered invalid. Data sorting procedures and texture lookup tables were used to identify exiting correct (valid) data entries that were used to substitute invalid records. STATSGO soil property data were grouped by soil order, MLRA, layer number, and texture to produce replacement values for all invalid data used to calculate mass SOC. Grouping criteria was specific to each variable and was based on texture designations. The resulting filled and unfilled tables were used with procedures assuming Normal and Lognormal distribution of parameters in order to analyze variation of mass SOC estimates caused by using different computation techniques. We estimated mass SOC to 2 m in Maine and Minnesota using filled and unfilled STATSGO data tables. Up to 54% of the records in Maine and up to 80% of the records in Minnesota contained null or zero values (mostly in fields related to rock fragments) that were replaced. After filling, the database resulted in 1.5 times higher area-weighted SOC. SOC calculated using the Normal distribution assumption were 1.2 to 1.5 times higher than those using the Lognormal transformation. SOC maps using the filled tables had more logical geographic SOC distribution than those using unfilled tables. The USDA Forest Service collects and maintains detailed inventory data for the condition and trends of all forested lands in the United States. A wide range of researchers and landowners use the resulting Forest Inventory and Analysis (FIA) database for analytical and decision making tasks. FIA data is available to the public in transformed or aggregate format in order to ensure confidentiality of data suppliers. The second main objective of this project was to compute SOC (kg m-2) results by FIA forest type and forest type group for three depth categories (25 cm, 1 m, and 2 m) at a regional scale for the 48 contiguous United States. There were four sets of results derived from the filled STATSGO and FIA datasets for each depth class by region: (1) SOC computed by the Lognormal distribution approach for (1a) all soil orders, (1b) without Histosols; and (2) SOC computed by the Normal distribution approach for (2a) all soil orders, (2b) without Histosols. Two spatial forest cover datasets were relevant to this project, FIA and AVHRR. We investigated the effects of FIA inventory data masking for Maine and Minnesota, such as plot coordinates rounding to the nearest 100 arc-second, and the use of 1 km resolution satellite-derived forest cover classes from AVHRR data, on SOC estimates to 2 m by forest type group. SOC estimates by soil mapping unit were derived from fixed STATSGO database tables and were computed by the Lognormal distribution approach including all soil orders. The methods in this study can be used for a variety of ecological and resource inventory assessments and the automated procedures can be easily updated and improved for future uses. The procedures in this study point out areas that could benefit the most during future revisions of STATSGO. The resulting SOC maps are dynamic and can be rapidly redrawn using GIS whenever STATSGO spatial or tabular data undergo updating. Use of pedon data to define representative values for all properties in all STATSGO layers and correlation of STATSGO layers to soil horizons will lead to vast improvement of the STATSGO Layer table and promote its use for mass SOC estimation over large regions. / Master of Science
199

VOC Interference with Standard Diesel Particulate Analysis for Mine Samples: Exploring Sources and Possible Solutions

Guse, Paige Marie 06 May 2020 (has links)
Exposure to diesel engine exhaust is linked to chronic and acute illness. In underground mines, workers can be exposed to high concentrations for extended periods of time. Therefore, Mine Safety and Health Administration (MSHA) enforces personal exposure and engine emission limits. These regulations target just the solid portion of diesel exhaust, known as diesel particulate matter (DPM). The majority of DPM mass is attributed to particulate organic carbon (POC) and elemental carbon (EC). Total carbon (TC) is the sum of POC and EC and currently used as the surrogate to represent DPM as a whole. The NIOSH Method 5040 is the standard sample collection and analysis procedure. It outlines collection of submicron particulate matter samples on a quartz filter then measurement of POC and EC using a thermal-optical analysis. Error in DPM measurement occurs when volatile organic carbon (VOC) sorbs onto the particulate matter deposit and filter resulting in a positive sampling artifact. To correct for this, a dynamic blank method with two quartz filters (i.e., primary and secondary) in tandem is used. However, the accuracy of the dynamic blank correction method is dependent on equal sorption of VOC onto each filter. Observed instances of higher VOC on the secondary filter result in underestimated POC measurements and in some cases negative POC. The work presented in this thesis investigates the sources of VOC interference in particulate matter sampling and possible solutions. Three existing datasets containing information from blank samples and laboratory and field DPM samples were analyzed to look into instances of higher VOC sorption onto the secondary filter. Negative total POC results were limited to blank samples, but negative results for the POC of individual isotherms were observed in blank and DPM samples. A follow-up study looked into the possibility of sampling materials as a source of VOC that preferentially sorbs onto the secondary filter. Blank samples were assembled to test five sampling materials (i.e., two types of sample cassette, cellulose support pads, impactor cassettes, and impactors). In addition, sample storage conditions (i.e., temperature and duration) were tested for their impact on VOC sorption. It was discovered that all of the sample materials tested contributed VOC and, as expected, higher storage temperatures and longer storage durations increase the amount of VOC. Preferential sorption onto the secondary filter was observed in most conditions as well. A field study explored thermal separation of VOC and POC as a possible alternative to the dynamic blank correction method. Two sets of DPM samples were collected from two locations in an underground stone mine and one set of ambient particulate matter samples was collected from a highly trafficked truck stop. The temperature of 175°C was used for this preliminary investigation. The effectiveness of a temperature separation may depend on sample location. To better understand VOC and POC evolution characteristic, further testing with a wide range of sample mass and composition as well as different temperatures is suggested. It seems unlikely that a correction method using a separation temperature would be more effective than the standard dynamic blank in occupational DPM monitoring. The work presented in this thesis highlights the difficulty in accurately measuring POC. / Master of Science / Diesel Particulate matter (DPM) is the solid portion of diesel exhaust and can cause chronic and acute illness. Underground miners can regularly be exposed to high concentrations of DPM over long periods of time, therefore DPM must be monitored. Total Carbon (TC) is the sum of particulate organic and elemental carbon (POC and EC) and is used as the surrogate measurement to represent DPM. The standard method of DPM sample analysis is subject to volatile organic carbon (VOC) interference, therefore a dynamic blank correction is used. However, in some cases, the dynamic blank over- or under-corrects. This thesis presents studies to better understand the source(s) of VOC interference and possible solutions. Three existing datasets containing information from blank samples and laboratory and field DPM samples were investigated for instances of VOC interference resulting in an overcorrection. Such instances were limited to blank and low mass samples. A field study looked into the possibility of sampling materials as a source of VOC that may cause overcorrection when using the dynamic blank method. Blank samples were assembled to test five sampling materials as well as various sample storage conditions. It was discovered that all of the sample materials tested contributed VOC and, as expected, higher storage temperatures and longer storage durations increase the amount of VOC. A second field study explored thermal separation of VOC and POC as a possible alternative to the dynamic blank correction method. Two sets of DPM samples were collected from two locations in an underground stone mine and one set of ambient particulate matter samples was collected from a highly trafficked truck stop. The temperature of 175°C was used for this preliminary investigation. Results indicate that the effectiveness of temperature separation may depend on sample concentration and composition. To better understand VOC and POC evolution characteristic, further testing with a wide range of sample mass and composition, as well as, different temperatures is suggested. The work presented in this thesis highlights the difficulty in accurately measuring POC.
200

Total Organic Carbon and Clay Estimation in Shale Reservoirs Using Automatic Machine Learning

Hu, Yue 21 September 2021 (has links)
High total organic carbon (TOC) and low clay content are two criteria to identify the "sweet spots" in shale gas plays. Recently, machine learning has been proved to be effective to estimate TOC and clay from well loggings. The remaining questions are what algorithm we should choose in the first place and whether we can improve the already built models. Automatic machine learning (AutoML) appears as a promising tool to solve those realistic questions by training multiple models and compares them automatically. Two wells with conventional well loggings and elemental capture spectroscopy are selected from a shale gas play to test the AutoML's ability in TOC and clay estimation. TOC and clay content are extracted from the Schlumberger's ELAN interpretation and calibrated to cores. Generalizability is proved in the blind test well and the mean absolute test errors for TOC and clay estimation are 0.23% and 3.77%. 829 data points are used to generate the final models with the train-test ratio of 75:25. The mean absolute test errors are 0.26% and 2.68% for TOC and clay, respectively, which are very low for TOC ranging from 0-6% and clay from 35-65%. The results show the AutoML's success and efficiency in the estimation. The trained models are interpreted to understand the variables effects in predictions. 235 wells are selected through data quality checking and feed into the models to create TOC and clay distribution maps. The maps provide guidance on where to drill a new well for higher shale gas production. / Master of Science / Locating "sweet spots", where the shale gas production is much higher than the average areas, is critical for a shale reservoir's successful commercial exploitation. Among the properties of shale, total organic carbon (TOC) and clay content are often selected to evaluate the gas production potential. For TOC and clay estimation, multiple machine learning models have been tested in recent studies and are proved successful. The questions are what algorithm to choose for a specific task and whether the already built models can be improved. Automatic machine learning (AutoML) has the potential to solve the problems by automatically training multiple models and comparing them to achieve the best performance. In our study, AutoML is tested to estimate TOC and clay using data from two gas wells in a shale gas field. First, one well is treated as blind test well and the other is used as trained well to examine the generalizability. The mean absolute errors for TOC and clay content are 0.23% and 3.77%, indicating reliable generalization. Final models are built using 829 data points which are split into train-test sets with the ratio of 75:25. The mean absolute test errors are 0.26% and 2.68% for TOC and clay, respectively, which are very low for TOC ranging from 0-6% and clay from 35-65%. Moreover, AutoML requires very limited human efforts and liberate researchers or engineers from tedious parameter-tuning process that is the critical part of machine learning. Trained models are interpreted to understand the mechanism behind the models. Distribution maps of TOC and clay are created by selecting 235 gas wells that pass the data quality checking, feeding them into trained models, and interpolating. The maps provide guidance on where to drill a new well for higher shale gas production.

Page generated in 0.0414 seconds