Spelling suggestions: "subject:"arganic carbon"" "subject:"0rganic carbon""
331 |
Nutrient sources and dynamics in the Parafield stormwater harvesting facility and implication to water quality control.Kim, Young-Kil. January 2010 (has links)
The quantity of stormwater runoff from the city of Adelaide almost matches the demand for drinking water. It therefore becomes increasingly important as an alternative source for water supply. This research focused at the Parafield Stormwater Harvesting Facility near Adelaide in order to better understand: (1) nutrient dynamics between the water column, sediments and plant community, (2) allochthonous and autochthonous sources of nutrients and (3) nutrient retention capacity of the reed bed. A weekly monitoring programme for the physical and chemical parameters of the water column, sediment and plant community was carried out over three years for specific locations within the reed bed. Ordination and clustering of the time series data revealed distinctive seasonal and spatial nutrient patterns. The concentrations for total nitrogen (TN) showed high concentrations for the summer period (1.04 to 1.86 mg/L) and low concentration for the winter season (0.25 to 0.46 mg/L). For the other nitrogen fractions in form of nitrate (NO₃⁻) and ammonium (NH₄⁺) the seasonal patterns were different to that of TN. In NO₃⁻ the concentrations were high during the summer and winter seasons and NH₄⁺ showed high concentration during the spring. The seasonality for total phosphorus (TP) showed high concentration for the spring period (0.049 to 0.163 mg/L) and low concentration for the other seasons (0.01 to 0.019 mg/L). A similar pattern has been observed for phosphate (PO₄³ ⁻) as well. The dissolved organic carbon (DOC) concentrations showed high concentrations during the summer period (21.36 to 31.64 mg/L) and low concentration during the winter seasons (5.48 to 7.14 mg/L). The seasonal pattern for the nutrient contents of the plant community showed highest concentrations during summer (5.5 to 34.2 gTN/kg) and lowest concentrations in winter (0.2 to 7.7 gTN/kg). Nutrient concentrations in the sediments were highest during the non-growing seasons (autumn and winter). This result indicated that the function of sediments changes seasonally from being a sink during the non-growing season by accumulating both allochthonous and autochthonous nutrients in the rainy season, and becoming a source during the growing seasons due to nutrient release from anaerobic sediments supporting the growth of the macrophyte community. Overall the function of sediment in reed bed pond of the Stormwater Harvesting Facility was to be a source of nutrients and therefore no accumulation of nutrients occurred during the study period. The research has demonstrated that the reed bed currently performs as a reasonable nutrient retention system with following nutrient removal rates: 0.85 mg TN /m²/day, 0.79 mg NO₃⁻ /m²/day, 0.28 mg NH₄⁺/m²/day, 0.05 mg TP /m²/day, 0.04 mg PO₄³ ⁻ /m²/day, and 5.75 mg DOC /m²/day. Seasonal difference in the water retention time showed that the for most of the nutrients the removal performance was most effective during autumn and winter with the exception of the removal performance of P forms, which most effective during spring and summer. For TN, NO₃⁻ and DOC the RE was most efficient at a residence time > 15days, for TP and PO₄³ ⁻ it is 5-10 days and for NH₄⁺ it is <;5days. Time–series modelling of the monitoring data resulted in rule-based prediction models for the different nutrients. Sensitivity analyses of the models revealed key driving variables for the nutrient dynamics of the reed bed. The prediction results revealed that the DO was the key driving variable influencing the nutrient concentrations in the water column and therefore to improve the water quality of the treatment water DO levels have to maintained above the threshold of 4 mg/L. Beside DO other key driving variables were turbidity, ORP and the nutrient levels from the previous site. Therefore the control of these parameters would be the start to develop a management plan for best-practice management in terms of water quality at the Parafield Stormwater Harvesting Facility. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1458926 / Thesis (Ph.D.) -- University of Adelaide, School of Earth and Environmental Science, 2010
|
332 |
Interactions between Bacteria and Fungi on Aquatic Detritus – Causes and ConsequencesMille-Lindblom, Cecilia January 2005 (has links)
<p>Bacteria and fungi dominate the decomposition of aquatic plants, a major process in the carbon and nutrient cycling in many aquatic systems. Although phylogenetically distant, bacteria and fungi often live in close proximity with each other. Since these microorganisms also have similar ecological functions, interactions have developed between them. This thesis explores the nature of such interactions, and the potential effects on key components of the decomposition process. The thesis includes a critical assessment of the ergosterol method for determination of fungal biomass, a survey of the environmental factors determining the distribution and taxa numbers of litter-decomposing bacteria and fungi in lakes, and a number of experiments on the interactions between bacteria and fungi. In all the experiments performed, fungi responded to bacterial presence through antagonism, although different fungal strains, bacterial communities and substrates were used. The antagonism seemed to be caused by interference competition for substrate. The fungal effect on bacteria was less consistent. Bacterial growth was suppressed, unaffected, or even enhanced by the presence of fungi. Fungi contributed more to extracellular enzyme production than bacteria, and bacteria were probably able to assimilate intermediate decomposition products formed through the activity of extracellular enzymes of fungal origin. Thus, the effect on bacteria from interacting with fungi was determined by the balance between competition and benefit from excreted enzymes. Bacteria and fungi also used different size fractions of the organic matter, according to their different enzymatic capacities. Hence, bacteria appeared to assimilate low-molecular-weight compounds, while high-molecular-weight compounds were utilized primarily by fungi. </p><p>In brief, the ecological interactions influenced the growth and hence also the biomass development of bacteria and fungi, which affected enzyme activity as well as utilization of dissolved organic matter. Therefore, I suggest that interactions between bacteria and fungi influence degradation of plant litter in aquatic systems.</p>
|
333 |
Spatial pattern and uncertainty of soil carbon and nitrogen in a subtropical savanna landscape in southern TexasLiu, Feng 15 May 2009 (has links)
Woody invasion into grasslands has been reported world-wide and has affected both the magnitude and spatial heterogeneity of soil carbon (C) and nitrogen (N). Since grasslands cover a large portion of the Earth's land surface, invasion of woody plants could have impacts on regional and global biogeochemistry. To understand large-scale ecological and policy implications of woody invasion, it is critical to understand the spatial pattern and uncertainty of soil C and N and their relationship with vegetation and soil attributes, as well as develop effective approaches to estimate soil C and N over large landscapes and regions. The goal of this study was to improve our understanding of the spatial pattern of soil organic carbon (SOC) and total nitrogen (TN) and their controlling factors in savanna landscapes and develop efficient sampling strategies for evaluating the effects of woody invasion. Specific objectives of this study were to: (1) Quantify the spatial pattern and uncertainty associated with SOC and develop efficient sampling strategies to estimate SOC storage; (2) Assess the influence of soil and vegetation factors on spatial distribution of SOC and TN; and (3) Determine the influence of physical variables related to landscape position and soil on woody vegetation structure. Conditional sequential indicator simulations indicated that woody encroachment into grassland increased both spatial heterogeneity and uncertainty of SOC, which increased errors in estimating SOC storage. Stratified random sampling with higher density in woody patches, plus structured sampling in cluster with strong spatial pattern, substantially increased estimation accuracy. Efficient sampling strategies for estimating SOC storage were developed based on these findings. Direct and spatial correlation and scaling analyses showed that SOC and TN were strongly correlated with litter and root biomass. Invaded woody vegetation has the most impact on spatial distribution of SOC and TN. Canonical correspondence analysis showed that variables related to landscape position were the primary factors determining the spatial distribution of woody species. These new insights will facilitate the estimation of soil C and N pools at landscape and regional scales, and will help evaluate the potential impacts of woody plant encroachment on the biogeochemistry of C and N.
|
334 |
Interactions between Bacteria and Fungi on Aquatic Detritus – Causes and ConsequencesMille-Lindblom, Cecilia January 2005 (has links)
Bacteria and fungi dominate the decomposition of aquatic plants, a major process in the carbon and nutrient cycling in many aquatic systems. Although phylogenetically distant, bacteria and fungi often live in close proximity with each other. Since these microorganisms also have similar ecological functions, interactions have developed between them. This thesis explores the nature of such interactions, and the potential effects on key components of the decomposition process. The thesis includes a critical assessment of the ergosterol method for determination of fungal biomass, a survey of the environmental factors determining the distribution and taxa numbers of litter-decomposing bacteria and fungi in lakes, and a number of experiments on the interactions between bacteria and fungi. In all the experiments performed, fungi responded to bacterial presence through antagonism, although different fungal strains, bacterial communities and substrates were used. The antagonism seemed to be caused by interference competition for substrate. The fungal effect on bacteria was less consistent. Bacterial growth was suppressed, unaffected, or even enhanced by the presence of fungi. Fungi contributed more to extracellular enzyme production than bacteria, and bacteria were probably able to assimilate intermediate decomposition products formed through the activity of extracellular enzymes of fungal origin. Thus, the effect on bacteria from interacting with fungi was determined by the balance between competition and benefit from excreted enzymes. Bacteria and fungi also used different size fractions of the organic matter, according to their different enzymatic capacities. Hence, bacteria appeared to assimilate low-molecular-weight compounds, while high-molecular-weight compounds were utilized primarily by fungi. In brief, the ecological interactions influenced the growth and hence also the biomass development of bacteria and fungi, which affected enzyme activity as well as utilization of dissolved organic matter. Therefore, I suggest that interactions between bacteria and fungi influence degradation of plant litter in aquatic systems.
|
335 |
Aerosol Absorption And Source Characteristics Over Different EnvironmentsSindhu, Kapil Dev 05 1900 (has links)
Extremely fine liquid droplets or solid particles, those remain suspended in the air, are known as aerosols. They are produced by natural sources and anthropogenic activities. Several types of aerosols produced by different processes are present in the atmosphere and every type of aerosol species exhibit different types of physical and chemical properties. Though making up only a small fraction of atmospheric mass aerosols are capable of altering Earth’s climate by scattering and absorbing incoming solar radiation and absorbing outgoing radiation. Adding to the complexity, they can act as cloud condensation nuclei and modify cloud properties.
Major objective of this thesis is to study absorption due to aerosols and factors controlling the absorbing efficiency of aerosols over various environments. We have demonstrated a new method to quantify the organic carbon in terms of optical depth. Our studies demonstrate large “anomalous” absorption in the UV wavelength region over several regions. Further investigations revealed that a major part of this additional absorption is contributed by organic carbon aerosols and partly due to dust aerosols. We show that it is possible to discriminate UV absorption by dust and organic carbon by making use of the fact that dust aerosols are much larger in size compared to organic aerosols.
Examination of aerosol optical depth values measured at cities south of Saharan desert indicates high short wave absorption due to coarse mode aerosols probably dust. Even at low values of Angstrom wavelength exponent, which indicates the presence of large aerosols (e.g., dust over land), absorption was found reasonably high compared to that of pure dust. On the other hand, over regions in the northern part of the Sahara close to Europe, short wave absorption was found to be lower. The enhanced short wave absorption due to coarse particles is unexpected. It appears that the deposition of anthropogenic aerosols such as black carbon over dust aerosols is likely to be responsible for this enhanced short wave absorption. This is a typical example of how anthropogenic aerosols can modify the properties of natural aerosols.
We have carried out source apportionment using backward air parcel trajectories by applying k-means method of clustering and obtained various aerosol terms corresponding to each cluster. We have selected three island sites and one site in the middle of Saharan desert for this study. High aerosol radiative forcing values are observed even over remote island locations. Our study demonstrates the role of aerosols transported from the main land in influencing the aerosol environment even over remote marine regions.
|
336 |
Methodological developments for mapping soil constituents using imaging spectroscopyBayer, Anita January 2012 (has links)
Climatic variations and human activity now and increasingly in the future cause land cover changes and introduce perturbations in the terrestrial carbon reservoirs in vegetation, soil and detritus. Optical remote sensing and in particular Imaging Spectroscopy has shown the potential to quantify land surface parameters over large areas, which is accomplished by taking advantage of the characteristic interactions of incident radiation and the physico-chemical properties of a material.
The objective of this thesis is to quantify key soil parameters, including soil organic carbon, using field and Imaging Spectroscopy. Organic carbon, iron oxides and clay content are selected to be analyzed to provide indicators for ecosystem function in relation to land degradation, and additionally to facilitate a quantification of carbon inventories in semiarid soils. The semiarid Albany Thicket Biome in the Eastern Cape Province of South Africa is chosen as study site. It provides a regional example for a semiarid ecosystem that currently undergoes land changes due to unadapted management practices and furthermore has to face climate change induced land changes in the future.
The thesis is divided in three methodical steps. Based on reflectance spectra measured in the field and chemically determined constituents of the upper topsoil, physically based models are developed to quantify soil organic carbon, iron oxides and clay content. Taking account of the benefits limitations of existing methods, the approach is based on the direct application of known diagnostic spectral features and their combination with multivariate statistical approaches. It benefits from the collinearity of several diagnostic features and a number of their properties to reduce signal disturbances by influences of other spectral features.
In a following step, the acquired hyperspectral image data are prepared for an analysis of soil constituents. The data show a large spatial heterogeneity that is caused by the patchiness of the natural vegetation in the study area that is inherent to most semiarid landscapes. Spectral mixture analysis is performed and used to deconvolve non-homogenous pixels into their constituent components. For soil dominated pixels, the subpixel information is used to remove the spectral influence of vegetation and to approximate the pure spectral signature coming from the soil. This step is an integral part when working in natural non-agricultural areas where pure bare soil pixels are rare. It is identified as the largest benefit within the multi-stage methodology, providing the basis for a successful and unbiased prediction of soil constituents from hyperspectral imagery. With the proposed approach it is possible (1) to significantly increase the spatial extent of derived information of soil constituents to areas with about 40 % vegetation coverage and (2) to reduce the influence of materials such as vegetation on the quantification of soil constituents to a minimum.
Subsequently, soil parameter quantities are predicted by the application of the feature-based soil prediction models to the maps of locally approximated soil signatures. Thematic maps showing the spatial distribution of the three considered soil parameters in October 2009 are produced for the Albany Thicket Biome of South Africa. The maps are evaluated for their potential to detect erosion affected areas as effects of land changes and to identify degradation hot spots in regard to support local restoration efforts. A regional validation, carried out using available ground truth sites, suggests remaining factors disturbing the correlation of spectral characteristics and chemical soil constituents.
The approach is developed for semiarid areas in general and not adapted to specific conditions in the study area. All processing steps of the developed methodology are implemented in software modules, where crucial steps of the workflow are fully automated. The transferability of the methodology is shown for simulated data of the future EnMAP hyperspectral satellite. Soil parameters are successfully predicted from these data despite intense spectral mixing within the lower spatial resolution EnMAP pixels.
This study shows an innovative approach to use Imaging Spectroscopy for mapping of key soil constituents, including soil organic carbon, for large areas in a non-agricultural ecosystem and under consideration of a partially vegetation coverage. It can contribute to a better assessment of soil constituents that describe ecosystem processes relevant to detect and monitor land changes. The maps further provide an assessment of the current carbon inventory in soils, valuable for carbon balances and carbon mitigation products. / Klimatische und anthropogene Faktoren verursachen bereits jetzt und verstärkt in Zukunft Änderungen der Landbedeckung und Landnutzung natürlicher Ökosysteme, die sich direkt auf die terrestrischen Kohlenstoffspeicher in Vegetation, Böden und biogenen Resten auswirken. Optische Fernerkundung und im Besonderen die Abbildende Spektroskopie sind etablierte Methoden, die basierend auf der charakteristischen Wechselwirkung der Sonnenstrahlung mit physikalisch-chemischen Materialeigenschaften eine quantitative Abschätzung degradationsrelevanter Parameter der Landoberfläche erlauben.
Das Ziel dieser Arbeit ist die Quantifizierung maßgeblicher Bodeninhaltsstoffe unter Verwendung von Feld- und abbildender Spektroskopie. Dabei stehen organischer Kohlenstoff, Eisenoxide und Ton im Fokus der Betrachtung, da ihre Gehalte im Boden als Indikatoren für Landoberflächenveränderungen verwendet werden können und ihre Analyse gleichzeitig eine direkte Abschätzung des bodengebundenen Kohlenstoffreservoirs ermöglicht. Das semiaride Albany Thicket in der östlichen Kapprovinz Südafrikas wurde als Arbeitsgebiet ausgewählt. Es steht beispielhaft für einen Naturraum, der sich gegenwärtig durch nicht angepasste Landnutzung verändert und der voraussichtlich auch in Zukunft hochfrequenten, durch den Klimawandel bedingten, Schwankungen unterliegen wird.
Die Arbeit ist in drei methodische Schritte untergliedert. Die einzelnen Prozessierungsschritte der entwickelten Methodik sind in Softwaremodulen umgesetzt, in denen die wichtigsten Schritte voll automatisiert sind. Unter Verwendung von im Feld gemessenen Reflektanzspektren und chemisch bestimmten Gehalten der obersten Bodenschicht wird ein Modell zur Bestimmung der drei ausgewählten Bodenparameter erstellt. Der gewählte Ansatz basiert auf der direkten Verwendung bekannter spektraler Merkmale in Verbindung mit multivariaten Verfahren.
In nächsten Schritt werden die großflächig aufgenommenen Hyperspektraldaten vorbereitet, die die für semiaride Räume typischen kleinräumigen Landbedeckungsänderungen wiederspiegeln. Auf subpixel-Basis erlaubt eine spektrale Entmischungsanalyse die Zerlegung nicht homogener Bildspektren in ihre spektralen Bestandteile. Dadurch kann für Pixel, die signifikante Anteile an unbedecktem Boden aufweisen, die reine spektrale Signatur des Bodens in Näherung bestimmt werden. Diese Vorgehensweise kennzeichnet einen wesentlichen Gewinn, da er eine Anwendung auf heterogene Naturräume abseits landwirtschaftlicher Flächen erlaubt, die Ausdehnung des Gültigkeitsbereichs, für den Bodeneigenschaften vorhergesagt werden können, deutlich steigert und den Einfluss von Fremdmaterialien wie Vegetation auf eine Bestimmung minimiert.
Daran anknüpfend erfolgt die Vorhersage von Bodeninhaltsstoffen. Die räumliche Verteilung von organischem Kohlenstoff, Eisenoxiden und der Tongehalte wie sie sich im Oktober 2009 im südafrikanischen Albany Thicket darstellte, wurde in thematischen Karten erfasst. Sie wurden hinsichtlich ihres Potentials ausgewertet, Bereiche zu erkennen, die in Folge von Landbedeckungsänderungen von Erosion betroffen sind.
Die vorliegende Arbeit zeigt einen innovativen Ansatz zur Verwendung Abbildender Spektroskopie zur Kartierung wichtiger Bodeneigenschaften in einem semiariden Naturraum. Die Methodik liefert einen Beitrag zur verbesserten Abschätzung ökosystemrelevanter Bodeneigenschaften sowie eine direkte Abschätzung vorhandener Kohlenstoffspeicher im Boden, Parameter, die zur Erkennung und Überwachung von Landbedeckungsänderungen verwendet werden können.
|
337 |
Analyse du bilan de matière du pétrole dans une région en phase d'exploitation avancée - bassin de Reconcavo, BrésilCarvalho Coutinho, Luiz Felipe 10 July 2008 (has links) (PDF)
Etablir un bilan de masses entre la génération, la migration et l'accumulation du pétrole est un processus important pour quantifier des systèmes pétroliers. Ce bilan donne en effet des indications sur la répartition du pètrole dans un bassin sédimentaire, que ce soit une province très explorée ou un secteur d'exploration frontière. Cette thèse a établi la méthodologie pour approcher un bilan de masses d'un système pétrolier sur un cas réel. Elle a non seulement quantifié les termes sources et les pertes, mais s'est également intéressée aux aspects compositionnels. Les accumulations connues ont pour cela servi de données de calibration des paramètres influant le bilan. Dans cette optique, le cas d'étude choisi est le bassin de Recôncavo au Nord-Est du Brésil. Il s'agit d'un rift avorté qui a été formé pendant la fragmentation du Gondwana, au cours de le Crétacé Inférieur. Le stade mature de l'exploration de ce bassin a contribué à réduire les incertitudes sur les pertes et les charges, points essentiels d'une définition de bilan de matière. Les nombreux paramètres qui influencent le bilan ont pu être calibrés de façon précise. Pour procéder au bilan, on a d'abord effectué des analyses géochimiques pour la description cinétique compositionnelle des membres Tauá et Gomo (Fm. Candeias), les roches mères principales de ce bassin. Une loi de restauration du carbone organique total (COT) a été obtenue en résultat des expériences thermogravimétriques et de l'analyse Rock-Eval. Une deuxième partie de ce travail a intégré les résultats de géochimie dans un schéma séquentiel de modélisation de systèmes pétroliers en 1D,2D et 3D. Une calibration du régime thermique au cours du temps géologique indépendante des données de maturité a servi de guide pour le terme source. Puis la genèse, l'expulsion et la migration ont été modélisées. Ces résultats ont fourni les éléments du bilan de masses sur ce bassin, qui montre que seulement 8% des hydrocarbures expulsés des roches-mères ont été piégés, 16% sont perdus dans le réseau poreux non réservoir et 76% sont sortis du système latéralement ou par exsudation au cours de son évolution.
|
338 |
Some Aspects of Arsenic and Antimony Geochemistry in High Temperature Granitic Melt – Aqueous Fluid System and in Low Temperature Permeable Reactive Barrier – Groundwater SystemGuo, Qiang 30 January 2008 (has links)
Arsenic and antimony are important trace elements in magmatic-hydrothermal systems, geothermal systems and epithermal deposits, but their partitioning behavior between melt and aqueous fluid is not well understood. The partitioning of arsenic and antimony between aqueous fluid and granitic melt has been studied in the system SiO2-Al2O3-Na2O-K2O-H2O at 800 degree C and 200 MPa. The partition coefficients of As and Sb between aqueous fluid and melt, are 1.4 +- 0.5 and 0.8 +- 0.5, respectively. The partitioning of As is not affected by aluminum saturation index (ASI) or SiO2 content of the melt, or by oxygen fugacity under oxidized conditions (log fO2 > the nickel-nickel oxide buffer, NNO). The partitioning of Sb is independent of and SiO2 content of the melt. However, aluminum saturation index (ASI) does affect Sb partitioning and Sb partition coefficient for peralkaline melt (0.1 +- 0.01) is much smaller than that for metaluminous melts (0.8 +- 0.4) and that for peraluminous melts (1.3 +- 0.7). Thermodynamic calculations show that As(III) is dominant in aqueous fluid at 800 degree C and 200 MPa and XPS analysis of run product glass indicate that only As(III) exists in melt, which confirms the finding that does not affect As partitioning between fluid and melt. XPS analysis of run product glass show that Sb(V) is dominant in melt at oxidized conditions (log fO2 > -10). The peralkaline effect only exhibits on Sb partitioning, not on As partitioning at oxidized conditions, which is consistent with the x-ray photoelectron spectroscopy (XPS) measurements that As(III) and Sb(V) are dominant oxidation states in melt under oxidized conditions, because the peralkaline effect is stronger for pentavalent than trivalent cations. Permeable reactive barriers (PRBs) are an alternative technology to treat mine drainage containing sulfate and heavy metals. Two column experiments were conducted to assess the suitability of an organic carbon (OC) based reactive mixture and an Fe0-bearing organic carbon (FeOC) based reactive mixture, under controlled groundwater flow conditions. The organic carbon (OC) column showed an initial sulfate reduction rate of 0.4 μmol g(oc)-1 d-1 and exhausted its capacity to promote sulfate reduction after 30 pore volumes (PVs), or 9 months of flow. The Fe0-bearing organic carbon (FeOC) column sustained a relative constant sulfate reduction rate of 0.9 μmol g(oc)-1 d-1 for at least 65 PVs (17 months). The microbial enumerations and isotopic measurements indicate that the sulfate reduction was mediated by sulfate reducing bacteria (SRB). The cathodic production of H2 by anaerobic corrosion of Fe probably is the cause of the difference in sulfate reduction rates between the two reactive mixtures. Zero-valent iron can be used to provide an electron donor in sulfate reducing PRBs and Fe0-bearing organic carbon reactive mixture has a potential to improve the performance of organic carbon PRBs. The δ34S values can be used to determine the extent of sulfate reduction, but the fractionation is not consistent between reactive materials. The δ13C values indicate that methanogenesis is occurring in the front part of both columns. Arsenic and antimony in groundwater are great threats to human health. The PRB technology potentially is an efficient and cost-effective approach to remediate organic and inorganic contamination in groundwater. Two column experiments were conducted to assess the rates and capacities of organic carbon (OC) PRB and Fe-bearing organic carbon (FeOC) PRB to remove As and Sb under controlled groundwater flow conditions. The average As removal rate for the OC column was 13 nmole day-1 g-1 (dry weight of organic carbon) and its removal capacity was 11 μmole g-1 (dry weight of organic carbon). The remove rate of the FeOC material was 165 nmole day-1 g-1 (dry weight of organic carbon) and its minimum removal capacity was 105 mole g-1 (dry weight of organic carbon). Antimony removal rate of the OC material decreases from 8.2 to 1.4 nmole day-1 g-1 (dry weight of organic carbon) and its removal capacity is 2.4 μmole g-1 (dry weight of organic carbon). The minimum removal rate of FeOC material is 13 nmole day-1 g-1 (dry weight of organic carbon) and its minimum removal capacity is 8.4 μmole g-1 (dry weight of organic carbon). The As(III) : [As(III)+As(V)] ratio increased from 1% in the influent to 50% at 5.5 cm from the influent end, and to 80% at 15.5 cm from the influent end of the OC column. X-ray absorption near edge spectroscopy (XANES) shows As(III)-sulfide species on solid samples. These results suggest that As(V) is reduced to As(III) both in pore water and precipitate as As sulfides or coprecipitate with iron sulfides. The arsenic reduction rate suggests that As(V) reduction is mediated by bacterial activity in the OC column and that both abiotic reduction and bacterial reduction could be important in FeOC.
|
339 |
Some Aspects of Arsenic and Antimony Geochemistry in High Temperature Granitic Melt – Aqueous Fluid System and in Low Temperature Permeable Reactive Barrier – Groundwater SystemGuo, Qiang 30 January 2008 (has links)
Arsenic and antimony are important trace elements in magmatic-hydrothermal systems, geothermal systems and epithermal deposits, but their partitioning behavior between melt and aqueous fluid is not well understood. The partitioning of arsenic and antimony between aqueous fluid and granitic melt has been studied in the system SiO2-Al2O3-Na2O-K2O-H2O at 800 degree C and 200 MPa. The partition coefficients of As and Sb between aqueous fluid and melt, are 1.4 +- 0.5 and 0.8 +- 0.5, respectively. The partitioning of As is not affected by aluminum saturation index (ASI) or SiO2 content of the melt, or by oxygen fugacity under oxidized conditions (log fO2 > the nickel-nickel oxide buffer, NNO). The partitioning of Sb is independent of and SiO2 content of the melt. However, aluminum saturation index (ASI) does affect Sb partitioning and Sb partition coefficient for peralkaline melt (0.1 +- 0.01) is much smaller than that for metaluminous melts (0.8 +- 0.4) and that for peraluminous melts (1.3 +- 0.7). Thermodynamic calculations show that As(III) is dominant in aqueous fluid at 800 degree C and 200 MPa and XPS analysis of run product glass indicate that only As(III) exists in melt, which confirms the finding that does not affect As partitioning between fluid and melt. XPS analysis of run product glass show that Sb(V) is dominant in melt at oxidized conditions (log fO2 > -10). The peralkaline effect only exhibits on Sb partitioning, not on As partitioning at oxidized conditions, which is consistent with the x-ray photoelectron spectroscopy (XPS) measurements that As(III) and Sb(V) are dominant oxidation states in melt under oxidized conditions, because the peralkaline effect is stronger for pentavalent than trivalent cations. Permeable reactive barriers (PRBs) are an alternative technology to treat mine drainage containing sulfate and heavy metals. Two column experiments were conducted to assess the suitability of an organic carbon (OC) based reactive mixture and an Fe0-bearing organic carbon (FeOC) based reactive mixture, under controlled groundwater flow conditions. The organic carbon (OC) column showed an initial sulfate reduction rate of 0.4 μmol g(oc)-1 d-1 and exhausted its capacity to promote sulfate reduction after 30 pore volumes (PVs), or 9 months of flow. The Fe0-bearing organic carbon (FeOC) column sustained a relative constant sulfate reduction rate of 0.9 μmol g(oc)-1 d-1 for at least 65 PVs (17 months). The microbial enumerations and isotopic measurements indicate that the sulfate reduction was mediated by sulfate reducing bacteria (SRB). The cathodic production of H2 by anaerobic corrosion of Fe probably is the cause of the difference in sulfate reduction rates between the two reactive mixtures. Zero-valent iron can be used to provide an electron donor in sulfate reducing PRBs and Fe0-bearing organic carbon reactive mixture has a potential to improve the performance of organic carbon PRBs. The δ34S values can be used to determine the extent of sulfate reduction, but the fractionation is not consistent between reactive materials. The δ13C values indicate that methanogenesis is occurring in the front part of both columns. Arsenic and antimony in groundwater are great threats to human health. The PRB technology potentially is an efficient and cost-effective approach to remediate organic and inorganic contamination in groundwater. Two column experiments were conducted to assess the rates and capacities of organic carbon (OC) PRB and Fe-bearing organic carbon (FeOC) PRB to remove As and Sb under controlled groundwater flow conditions. The average As removal rate for the OC column was 13 nmole day-1 g-1 (dry weight of organic carbon) and its removal capacity was 11 μmole g-1 (dry weight of organic carbon). The remove rate of the FeOC material was 165 nmole day-1 g-1 (dry weight of organic carbon) and its minimum removal capacity was 105 mole g-1 (dry weight of organic carbon). Antimony removal rate of the OC material decreases from 8.2 to 1.4 nmole day-1 g-1 (dry weight of organic carbon) and its removal capacity is 2.4 μmole g-1 (dry weight of organic carbon). The minimum removal rate of FeOC material is 13 nmole day-1 g-1 (dry weight of organic carbon) and its minimum removal capacity is 8.4 μmole g-1 (dry weight of organic carbon). The As(III) : [As(III)+As(V)] ratio increased from 1% in the influent to 50% at 5.5 cm from the influent end, and to 80% at 15.5 cm from the influent end of the OC column. X-ray absorption near edge spectroscopy (XANES) shows As(III)-sulfide species on solid samples. These results suggest that As(V) is reduced to As(III) both in pore water and precipitate as As sulfides or coprecipitate with iron sulfides. The arsenic reduction rate suggests that As(V) reduction is mediated by bacterial activity in the OC column and that both abiotic reduction and bacterial reduction could be important in FeOC.
|
340 |
An Ecosystem Approach to Dead Plant Carbon over 50 years of Old-Field Forest DevelopmentMobley, Megan Leigh January 2011 (has links)
<p>This study seeks to investigate the dynamics of dead plant carbon over fifty years of old-field forest development at the Calhoun Long Term Soil-Ecosystem Experiment (LTSE) in South Carolina, USA. Emphasis is on the transition phase of the forest, which is less well studied than the establishment and early thinning phase or the steady state phase. At the Calhoun LTSE, the biogeochemical and ecosystem changes associated with old field forest development have been documented through repeated tree measurements and deep soil sampling, and archiving of those soils, which now allow us to examine changes that have occurred over the course of forest development to date.</p><p> In this dissertation, I first quantify the accumulation of woody detritus on the surface of the soil as well as in the soil profile over fifty years, and estimate the mean residence times of that detrital carbon storage. Knowing that large accumulations of C-rich organic matter have piled onto the soil surface, the latter chapters of my dissertation investigate how that forest-derived organic carbon has been incorporated into mineral soils. I do this first by examining concentrations of dissolved organic carbon and other constituents in soil solutions throughout the ecosystem profile and then by quantifying changes in solid state soil carbon quantity and quality, both in bulk soils and in soil fractions that are thought to have different C sources, stabilities, and residence times. To conclude this dissertation, I present the 50-year C budget of the Calhoun LTSE, including live and dead plant carbon pools, to quantify the increasing importance of detrital C to the ecosystem over time.</p><p>This exceptional long term soil ecosystem study shows that 50 years of pine forest development on a former cotton field have not increased mineral soil carbon storage. Tree biomass accumulated rapidly from the time seedlings were planted through the establishment phase, followed by accumulations of leaf litter and woody detritus. Large quantities of dissolved organic carbon leached from the O-horizons into mineral soils. The response of mineral soil C stocks to this flood of C inputs varied by depth. The most surficial soil (0-7.5cm), saw a large, but lagged, increase in soil organic carbon (SOC) concentration over time, an accumulation almost entirely due to an increase of light fraction, particulate organic matter. Yet in the deepest soils sampled, soil carbon content declined over time, and in fact the loss of SOC in deep soils was sufficient to negate all of the C gains in shallower soils. This deep soil organic matter was apparently lost from a poorly understood, exchangeable pool of SOM. This loss of deep SOC, and lack of change in total SOC, flies in the face of the general understanding of field to forest conversions resulting in net increases in soil carbon. These long term observations provide evidence that the loss of soil carbon was due to priming of SOM decomposition by enhanced transpiration, C inputs, and N demand by the growing trees. These results suggest that large accumulations of carbon aboveground do not guarantee similar changes below.</p> / Dissertation
|
Page generated in 0.0618 seconds