Spelling suggestions: "subject:"arganic compounds."" "subject:"0rganic compounds.""
1011 |
A mechanistic study of VOC and moisture emissions from small softwood piecesWild, Martha Patricia 05 1900 (has links)
No description available.
|
1012 |
The Ambient Organic Aerosol Soluble in Water: Measurements, Chemical Characterization, and an Investigation of SourcesSullivan, Amy Patricia 03 May 2006 (has links)
This thesis characterizes the ambient fine organic carbon aerosol and investigates its sources through the development and deployment of new measurement techniques. The focus is on organic compounds that are soluble in water (WSOC), which comprise a large fraction of the organic aerosol, yet little has been known about its chemical nature.
A method was developed for quantitative on-line measurements of WSOC by using a Particle-into-Liquid Sampler (PILS) to capture ambient particles into a flow of purified water, which is then forced through a liquid filter and the carbonaceous content quantified by a Total Organic Carbon (TOC) analyzer. This system allows for a continuous 6 minute (ground-based) or 3 s integrated measurement (airborne) with a limit of detection of 0.1 microgramsC/m3 and uncertainty of 10%.
Furthermore, a new quantitative method was developed to group speciate the WSOC. In the first step, WSOC is separated by use of XAD-8 resin into its hydrophilic (WSOCxp) and hydrophobic (WSOCxr) fractions. This separation can be performed on-line by coupling the XAD-8 column with the PILS-TOC or off-line on WSOC extracted from integrated filter samples. If off-line, a second step involving size-exclusion chromatography (SEC) is used to chromatographically separate by organic functional groups the WSOCxp and recovered hydrophobic fraction (WSOCxrr). During this step, the WSOCxp is further separated into aliphatic acids with less than four carbons, neutrals, and bases. The WSOCxrr can be separated into acids and neutrals.
Results showing the capabilities of the PILS-TOC both on the ground at the St. Louis Midwest Supersite and when airborne during the New England Air Quality Study/Intercontinental Transport and Chemical Transformation 2004 mission conducted in the northeastern U.S. will be presented. Ambient results from urban sites where a PILS-TOC was coupled with a XAD-8 column will be discussed. Data from the two-step speciation performed on samples collected from urban Atlanta summer and winter, and biomass burning in rural Georgia in a region of prescribed burning are presented. Finally, WSOC measurements obtained in Atlanta and its surrounding regions from both the speciation measurements and PILS-TOC will be used to investigate the sources of WSOC in the southeastern U.S.
|
1013 |
Air — Water Partitioning of Volatile Organic Compounds and Greenhouse Gases in the Presence of SaltsFalabella, James Benjamin 10 May 2007 (has links)
The determination of accurate volatile organic compound (VOC) and greenhouse gas (GHG) partitioning coefficients for air-water interfaces is essential for pollution and global climate modeling. In the atmosphere, oceans, and groundwater the concentration of dissolved salts is high enough to significantly alter the air-water partitioning behavior of the VOC or GHG, prohibiting the use of literature data or predictive models that omit the salt effect. Despite the great need for air-water partitioning data of the VOCs and GHGs threatening the environment, there is a lack of air-water partitioning data in the presence of dissolved salt. Furthermore, there are large disagreements between reported data from different research groups, which hamper model development. Henry s constants of several VOCs with salts were measured with a new high-throughput headspace gas chromatography (HTHSGC) method to create a library of internally consistent air-water partition coefficients for modeling. The VOCs studied included a homologous series of 1-alkanols, 2-ketones, organic sulfides, and the principle components of gasoline including: toluene, ethylbenzene, o-xylene, methyl tertbutyl ether, and ethyl tertbutyl ether. A model with temperature-independent parameters based on dilute solution theory was developed using the library of data to resolve the disagreements between literature sources and perform a priori prediction of salt effects. The model correlated air-water partitioning data in the form of Henry s constants over temperature ranges as wide as 300 Kelvin, salt concentrations up to 4 molal, and pressures up to 1000 bar. Extrapolations of up to 50 K, and 1 molal salt and 100 bar pressure can also safely be performed to eliminate the need for additional experiments. The temperature-independent salt effect parameter was found to be directly proportional to the critical volume of the VOC and all homologous VOCs explored followed the same linear trend allowing a priori prediction of the salt effect for unexplored compounds.
|
1014 |
Assessment of the Emission Rate and Distribution of Volatile Organic Compounts in the Sewege System in A Metropolitan CityLi, Chia-yu 23 June 2010 (has links)
This work is study 71 kinds of volatile organic compounds (VOCs) in the sewer system of a metropolitan city during dry/wet weather. The VOCs contains alkanes, alkenes and alkynes, aromatics, chlorinated organics, sulfides, ketones and ethers. The purpose of this work estimated the emission rates of VOCs and cancer risk within 12 kinds of hazardous air pollutants (HAPs) will be part of the investigation 26 HAPs by using risk assessment.
TVOCs (concentrations of total VOCs) in dry weather was higher than that in wet weather for both sewer systems. The concentration distributions of dominant were KB7 (C3) in the A (B) sewer system. This system collected sewage from harbor and industrial park. During dry and wet weather, the most common VOCs were chlorinated organics and alkanes in the A sewer system, respectively. The main contribution were chloroethene and isopentane; the most common VOCs were aromatics in the B sewer system. The main contribution was m / p-Xylene.
This results show that the most emission rates of TVOCs is C3 (13,834.79 mg/hr) during dry weather and KB2 (1875.25 mg/hr) during wet weather. The emission rates of K1
|
1015 |
Performance Study on the Field Treatment of VOCs Emitted from a Solvent Plant by Biofilter Packed with Fern ChipsTseng, Chia-Ling 04 August 2010 (has links)
Organic solvent production plants emit waste gases containing volatile organic compounds (VOCs) which are usually harmful to the environments and public healths. Plant managers are obligated to control the VOC emission to meet regulations at reasonable costs. A solvent plant located in southern Taiwan emits VOC-containing gas streams from some distillation columns and storage vessels with a total ventilation gas flow rate of 2.6-3.6 m3/min which contains VOCs with concentrations of less than 1,000 mg C/m3. Due to a concern of plant¡¦s safety, the plant managers constructed a full-scale biofilter for eliminating a part of the VOCs and the associated odors in the waste gas. This study aimed to investigate the effects of operation parameters such as EBRT (empty bed retention time) of the gas through the biofiltration media and organic loading to the media on the VOC removal efficiency.
The biofilter is constructed of RC (reinforced concrete) with outer dimensions of 8.45 mL ¡Ñ 3.30 mW ¡Ñ 3.00 mH. The filter was also instrumented with inverters for control of speed of induced fans, and with thermometers, hygrometers, and wind speed meters. Fern chips with a total packing volume of 36 m3 was used as the biofiltration media. After inoculation with suitable microorganisms, the waste gas was introduced to the filter for VOC elimination. Nutrients (urea, milk, and a phosphate salt) and water were supplemented to the media on a daily basis.
The investigation period is July, 2008 to May, 2010. In the period, THC (total hydrocarbon) concentrations for the influent and effluent gases to and from the reactor were daily measured. In addition, on a weekly basis, compositions of the VOCs in gas samples were detected by a gas chromatography equipped with a flame ionization dector (FID). On the same time basis, pH, COD (chemical oxygen demand), SS (suspended solids) in a sample of the trickled liquid from the media was analyzed. Media pH and moisture content were also analyzed for understanding the environmental conditions around the microorganisms for the VOC degradation.
Results indicated that the media was in conditions of pH = 4.5-7.0, moisture = 11-61 % in the experimental phase. Trickled liquid had low COD and SS contents which can be easily treated by the existing wastewater unit in the plant, or be recycled to the media. Avarage THC, NMHC (nonmethane hydrocarbon), and VOCs were 71, 73, and 79%, respectively, with gas EBRTs of 4.2-6.3 min. With media pH of 4-5 and moisture contents 51-57%, over 90% of the influent VOCs coulb be eliminated. However, nearly dried media (moisture around 10%) had VOC removal efficiencies of lower than 30%. Nutrition tests indicate that the VOC removal efficiency was nearly proportional to milk supplementation rate. Removal of ethnaol and acetic could easily be removed with an efficiency of over 97% while 2-pentane was only 74%. Odor intensities of the treated gas could be controlled to <1,000 (dilutions to threshold) according to 3 test data.
|
1016 |
Studies on the elimination of volatile organic compounds in industry waste gas streamsLi, Shang-Chuan 17 August 2010 (has links)
This study aimed to develop a biofilter packed only with fern chips for the removal of air-borne low concentration VOCs (volatile organic compounds) emitted from various industries such as semiconductor manufacturing and electronic ones. The fern chip biofilters could avoid the shortcomings of traditional media, such as compaction, drying, and breakdown, which lead to the performance failure of the biofilters.
The study contains two topics. The first is a performance test on the elimination of mixed VOCs used in semiconductor manufacturing industries in an air stream. The second is the one on the elimination of a single VOC (methyl ethyl ketone) in a waste gas drawn from a CCL (copper clad laminate) plant.
Two pilot-scale biofilters consisted of two columns (0.40 mW¡Ñ0.40 mL¡Ñ0.70 mH acrylic column) arranged in series were used for the performance tests. Each of the two columns was packed with fern chips to a packing volume of around 56 L (0.40 mW¡Ñ0.40 mL¡Ñ0.35 mH). A sprinkler was set over the packed fern chips for providing them with water and nutrition solutions. Liquid leached from both layers of chips were collected in the bottom container of the column.
In the first topic, tests were performed for biofiltration removal of VOCs in simulated semiconductor manufacturing emitted gases which consisted of IPA (isopropyl alcohol), acetone, HMDS (hexamethylene disilazane), PGME (propylene glycol monomethyl ether), and PGMEA (propylene glycol monomethyl ether acetate). From the results, it could be proposed that for achieving over 94% of the VOC removal, appropriate operation conditions are media moisture content = 52-68%, media pH = 7-8, influent VOC concentration = 150-450 mg/Am3, empty bed residence time (EBRT) = 0.75 min, and volumetric organic loading L to the whole media = 11.4-34.1 g/m3.h.
In the second topic, performances of biofiltration for the removal of methyl ethyl ketone (MEK) in a gas stream from a copper clad laminate (CCL) manufacturing process were tested. Experimental results indicate that with L of <115 g /m3.h., EBRT = 0.5-1.28 min , media pH = 5.3-6.8, influent MEK concentration = 215-1,670 mg/Am3, MEK removal efficiencies of over 91% were obtained. Instant milk powder was essential to the good and stable performance of the biofilter for MEK removal.
|
1017 |
Application of in situ chemical oxidation technology to remediate chlorinated-solvent contaminated groundwaterWen, Yi-ting 22 August 2010 (has links)
Groundwater at many existing and former industrial sites and disposal areas is contaminated by halogenated organic compounds that were released into the environment. The chlorinated solvent trichloroethylene (TCE) is one of the most ubiquitous of these compounds. In situ chemical oxidation (ISCO) has been successfully used for the removal of TCE. The objective of this study was to apply the ISCO technology to remediate TCE-contaminated groundwater. In this study, potassium permanganate (KMnO4) was used as the oxidant during the ISCO process. The study consisted bench-scale and pilot-scale experiments. In the laboratory experiments, the major controlling factors included oxidant concentrations, effects of soil oxidant demand (SOD) on oxidation efficiency, and addition of dibasic sodium phosphate on the inhibition of production of manganese dioxide (MnO2). Results show that higher molar ratios of KMnO4 to TCE corresponded with higher TCE oxidation rate under the same initial TCE concentration condition. Moreover, higher TCE concentration corresponded with higher TCE oxidation rate under the same molar ratios of KMnO4 to TCE condition. Results reveal that KMnO4 is a more stable and dispersive oxidant, which is able to disperse into the soil materials and react with organic contaminants effectively. Significant amount of MnO2 production can be effectively inhibited with the addition of Na2HPO4. Results show that the increase in the first-order decay rate was observed when the oxidant concentration was increased, and the half-life was approximately 24.3 to 251 min. However, the opposite situation was observed when the second-order decay rate was used to describe the reaction. Results from the column experiment show that the breakthrough volumes were approximately 50.4 to 5.06 pore volume (PV). Injection of KMnO4 would cause the decrease in TCE concentration through oxidation. Results also indicate that the addition of Na2HPO4 would not inhibit the TCE removal rate. In the second part of this study, a TCE-contaminated site was selected for the conduction of pilot-scale study. A total of eight remediation wells were installed for this pilot-scale study. The initial TCE concentrations of the eight wells were as follows: C1 = 0.59 mg/L, C1-E = 0.64 mg/L, C1-W = 0.61 mg/L, EW-1 = 0.65 mg/L, EW-1E = 0.62 mg/L, EW-1W = 0.57 mg/L, C2 = 0.62 mg/L, C3 = 0.35 mg/L. C1, EW-1, C2, and C3 were located along the groundwater flow direction from the upgradient (C1) to the downgradient location (C3), and the distance between each well was 3 m. C1-E and C1-W were located in lateral to C1 with a distance of 3 m to C1. EW-1E and EW-1W were in lateral to EW-1 with a distance of 3 m to EW-1. In the first test, 2,700 L of KMnO4 solution was injected into each of the three injection wells (C1, C1-E, and C1-W) with concentration of 5,000 mg/L. Three injections were performed with an interval of 6 hr between each injection. After injection, the TCE concentrations in those three wells dropped down to below detection limit (<0.0025 mg/L). However, no significant variations in TCE concentrations were observed in other wells. In the second test, 2,700 L of KMnO4 solution was injected into injection well (EW-1) with concentration of 5,000 mg/L. Six injections were performed with an interval of 6 hr between each injection. After injection, the TCE concentrations in the injection well dropped down to below detection limit (<0.0025 mg/L). TCE concentrations in (C1, C1-E, C1-W, EW-1E, EW-1W, C2, and C3) dropped to 0.35-0.49 mg/L. After injection, no significant temperature and pH variation was observed. However, increase in conductivity and oxidation-reduction potential (ORP) was observed. This indicates that the KMnO4 oxidation process is a potential method for TCE-contaminate site remediation. The groundwater conductivity increased from 500 £gS/cm to 1,000 £gS/cm, and ORP increased from 200 to 600 mv. Increase in KMnO4, MnO2, and total Mn was also observed in wells. Results from the slug tests show that the hydraulic conductivity remained in the range from 10-4 to 10-5 m/sec before and after the KMnO4 injection.
|
1018 |
Spatial and Temporal Characteristics of Volatile Organic Compounds and Ozone Formation Potential in Industrial ParkLin, Jia-shiang 23 June 2011 (has links)
This study measured Ambient concentrations of air pollutants and Volatile Organic Compounds (VOCs) in industrial park in Kaohsiung City. The spatial distribution was investigated during different time periods and seasons. The ozone formation potential (OFP) of VOCs species were evaluated based on the maximum incremental reactivity (MIR). Also, this study using factor analysis to estimate the polluted source.
The season distribution of air pollutants showed concentration in spring higher than summer, owing to air activities of summer are acute include wet precipitation, photochemical reaction, and convection. The time period distribution showed the results which NOx and O3 concentration occurred peaks at 7:00 − 8:00, 18:00 − 19:00 and 13:00 − 16:00, respectively. The reason is photochemical reaction, lead to concentration trend with time of NOx inversely to O3. The concentration trend with time of CO and PM10 similar to NOx. The polluted sources were estimated mobile. By the way, O3 is proportional to temperature, but it is Inversely proportional to humility.
The seasons distribution of VOCs showed most abundant species included 2-butanone, toluene, and n-pentane in spring, while included toluene, acetone, m,p-xylene, and methyl methacrylate in summer. According to percent composition, most abundant categories in spring and summer were both aromatics, ketones, and alkanes. The TVOC concentration was spring (164.6 £gg/m3) higher than summer (116.4 £gg/m3). The time periods distribution of VOCs showed most abundant categories included aromatics and ketones in morning and evening, while included aromatics and alkanes in night. The TVOC concentration of evening (163.2 ¡Ó 62.7 £gg/m3) was highest, followed by night (159.9 ¡Ó 87.4 £gg/m3), Lowest was morning (98.4 ¡Ó 32.3 £gg/m3). Results showed alkanes and alkenes own higher concentration in night, ketones and esters in evening, and aromatics in evening and night. The reason is related with sunshine, inversion layer, and lower wind speed. By the way, TVOC is proportional to temperature.
In spring, the OFP was 566.0 £gg-O3/m3, OFP/TVOC was 3.44. In summer the OFP was 629.3 £gg-O3/m3, OFP/TVOC was 5.41. It was worth mentioning highest OFP categories in spring and summer was both aromatics (332.2 £gg-O3/m3, 380.3 £gg-O3/m3), and highest OFP species was toluene (138.8 £gg-O3/m3) and methyl methacrylate (171.7 £gg-O3/m3) , respectively.
The results from factor analyses showed the predominant source included mobile polluted source, petrol evaporation, related electronic industry, metallurgy industry, refinery, and architectural coatings escape in spring. The predominant source included mobile polluted source, petrol evaporation, plastic industry, steel industry, and related electronic industry in summer.
|
1019 |
Vertical Distribution and Seasonal Variation of Volatile Organic Compounds in the Ambient Atmosphere of a Petrochemical Industrial ComplexYang, Jhih-Jhe 02 September 2011 (has links)
The emission of volatile organic compounds (VOCs) and odors from petrochemical industrial complex, including China Petroleum company (CPC),Renwu and Dazher petrochemical industrial parks, causes poor air quality of northern Kaohsiung. The removal efficiencies of elevated stacks and flares might play
important roles on ambient air quality in metro Kaohsiung. Consequently, this study
applied a tethered balloon technology to measure the vertical profile of VOCs, and
ascertained their three dimensional dispersion in the atmosphere.
The vertical profile of VOCs in ambient atmosphere surrounding the
petrochemical industrial complex was measured during the intensive sampling periods
(September 17-18th and December 20-21st, 2009 and April 8-9th and July 7-8th, 2010).
Moreover, this study was designed to sample and analyze VOCs emitted from
elevated stacks and flares, and estimate their emission factors. Finally, the source
identification and ozone formation were further determined by principal component
analysis (PCA) and ozone formation potential (OFP).
This study found that some regions had relatively poorer air quality than other
regions surrounding the petrochemical industrial complex. Most sampling sites with
poor air quality were located at the downwind region of the petrochemical industrial
complex, particularly with the prevailing winds blown from the northwest. Moreover,
stratification phenomena were frequently observed at most sampling sites, indicating
that high-altitude VOCs pollution should be considered for ambient air quality.
This study revealed that the indicators of VOCs in northern Kaohsiung were
toluene, C2 (ethylene+acetylene+ethane), and acetone. Vertical sampling of VOCs
showed that the species of VOCs at the ground and high altitude were different,
suggesting that ambient air quality at high altitude might be affected by the emission
of VOCs from elevated stacks and flares at the petrochemical industrial complex.
Results obtained from PCA showed that the major sources of VOCs in the
ambient atmosphere of the petrochemical industrial complex were similar to the characteristics of VOCs emitted from the petrochemical industrial complex. The
characteristics of VOCs at high altitude had strong correlation with petrochemical
industry, indicating that the ambient air quality of northern Kaohsiung was highly
influenced by the emission of VOCs from high stacks and flares. In addition, major
VOCs for O3 formation potential at northern Kaohsiung were aromatics and vinyls,
with particular species of toluene and C2. Moreover, air pollution episodes resulting
from high O3 concentration was usually observed in early winter.
Flare sampling results indicated that major VOCs emitted from the ground flare
of CPC were alkanes and vinyls. The average removal efficiency of TVOCs was
98.2%. The average emission factor of VOCs was 0.0186 kg NMHC/kg flare gas. In
addition, stack sampling results indicated that the emission factors of crude oil
distillation process (P105), mixing process (P060), and rubber manufacturing process
(P408) were 0.105, 1.11, and 61.97 g/Kl, respectively. The emission factor of P105
was lower than AP-42, while that of P408 was higher than AP-42.
|
1020 |
Treatment of Volatile Organic Compounds in Cooking Oil Fume Emitted from Restaurants by Nano-sized TiO2 Photocatalyst Coated Fiberglass Filter and Ozone Oxidation TechnologyLai, Tzu-Fan 20 August 2012 (has links)
Recently, restaurant employees exposing to cooking oil fume with potential lung cancer was highly concerned, indicating cooking oil fume emitted from restaurants might cause tremendous hazard to human health. This study combined photocatalytic oxidation and ozone oxidation technology to decompose VOCs from the exhaust of cooking oil fume from restaurants. Firstly, this study selected three different types of restaurants to implement air pollutant measurements in the indoor dinning room and stack emission. Indoor TVOCs continuous monitoring data showed that the highest TVOCs concentration was generally observed in the dining peak time.
In this study, photocatalyst coated fiberglass filter was prepared by impregnation procedure and its characteristics was analyzed by SEM and XRD. Experimental results showed that the particle size of photocatalyst ranged from 25 to 50 nm and had high percentage of Anatase, suggesting that it had high photocatalytic reactivity.
This study designed a continuous-flow reaction system combined nano-sized TiO2 photocatalysis with ozone oxidation technology to decompose VOCs from cooking oil fume. After passing through a fiberglass filter to remove oil droplets, the cooking oil fume then coated with nano-sized titanium oxide (UV/TiO2) fiberglass filter purification system, and then injected ozone into the system to decompose residual VOCs. This study further investigated the influences of operating parameters, including TVOCs initial concentration, O3 injection concentration, and reaction temperature on the decomposition efficiency of TVOCs by using the UV/TiO2/O3 technology.
When the photocatalytic reaction temperature was 35~50¢J, the TVOC decomposition efficiency slightly increased with reaction temperature, however, when the reaction temperature went up to 55¢J, the TVOC decomposition efficiency increased only slightly, but did not increased linearly.
Combination of photocatalysis and ozone oxidation system performance test results showed that ozone could decompose approximately 34% VOCs, and followed by the photocatalytical reaction of residual pollutants, achieving an overall decomposition efficiency of about 75%; while photocatalytic reaction can remove 64% of TVOCs and followed by O3 for the decomposition of residual pollutants, achieving an overall decomposition efficiency up to 94%. It showed that the combined UV/TiO2+O3 system could effectively remove VOCs in the cooking oil fume from the exhaust of restaurants.
By using GC/MS to qualitatively analyze the speciation of TVOCs from cooking oil fume before and after UV/TiO2/O3, the results showed that the composition of VOCs had a decreasing trend. The peak area and dilution factor were applied to estimate the decomposition efficiency of different VOCs species. The decomposition efficiencies of pentane, 2-acrolein, acrolein, heptane, pentanal, hexanal, 2-hexenal, heptanal, heptenal and ethylhexenal were 56.21%, 72.88%, 51.33%, 32.23%, 59.04%, 69.22%, 73.53%, 41.37%, 92.57%, and 96.02%.
Finally, a Langmuir-Hinshelwood kinetic model was applied to simulate the photocatalytic decomposition efficiency with the initial concentration of cooking oil fume. Model simulation results showed that the reaction rate increased with the initial TVOCs concentration. However, when TVOCs concentration increased gradually, the reaction rate became constant since the activated sites on the photocatalyst¡¦s surface was limited and cannot allow more VOC molecules diffuse to the activated sites for further photocatalytic reaction.
|
Page generated in 0.0532 seconds