• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Wet Organic Field Effect Transistor as DNA sensor

Chiu, Yu-Jui January 2008 (has links)
Label-free detection of DNA has been successfully demonstrated on field effect transistor (FET) based devices. Since conducting organic materials was discovered and have attracted more and more research efforts by their profound advantages, this work will focus on utilizing an organic field effect transistor (OFET) as DNA sensor. An OFET constructed with a transporting fluidic channel, WetOFET, forms a fluid-polymer (active layer) interface where the probe DNA can be introduced. DNA hybridization and non-hybridization after injecting target DNA and non-target DNA were monitored by transistor characteristics. The Hysteresis area of transfer curve increased after DNA hybridization which may be caused by the increasing electrostatic screening induced by the increasing negative charge from target DNA. The different morphology of coating surface could also influence the OFET response.
2

Wet Organic Field Effect Transistor as DNA sensor

Chiu, Yu-Jui January 2008 (has links)
<p>Label-free detection of DNA has been successfully demonstrated on field effect transistor (FET) based devices. Since conducting organic materials was discovered and have attracted more and more research efforts by their profound advantages, this work will focus on utilizing an organic field effect transistor (OFET) as DNA sensor.</p><p>An OFET constructed with a transporting fluidic channel, WetOFET, forms a fluid-polymer (active layer) interface where the probe DNA can be introduced. DNA hybridization and non-hybridization after injecting target DNA and non-target DNA were monitored by transistor characteristics. The Hysteresis area of transfer curve increased after DNA hybridization which may be caused by the increasing electrostatic screening induced by the increasing negative charge from target DNA. The different morphology of coating surface could also influence the OFET response.</p>
3

Impact of process parameter modification on poly(3-hexylthiophene) film morphology and charge transport

Lee, Jiho 13 January 2014 (has links)
Organic electronics based on π-conjugated semi-conductor raises new technology, such as organic film transistors, e-paper, and organic photovoltaic cells that can be implemented cost-effectively on large-area applications. Currently, the device performance is limited by low charge carrier mobility. Poly(3-hexylthiophene) (P3HT) and organic field effect transistors (OFET) is used as a model to investigate morphology of the organic film and corresponding electronic properties. In this thesis, processing parameters such as boiling points and solubility are controlled to impact the micro- and macro-morphology of the film to enhance the charge transport of the device. Alternative approach to improve ordering of polymer chains and increase in charge transport without post-treatment of P3HT solution is studied. The addition of high boiling good solvent to the relatively low boiling main solvent forms ordered packing of π-conjugated polymers during the deposition process. We show that addition of 1% of dichlorobenzene (DCB) to the chloroform based P3HT solution was sufficient to improve wetting and molecular structures of the film to increase carrier mobility. Systematic study of solvent-assisted re-annealing technique, which has potential application in OFET encapsulation and fabrication of top-contact OFET, is conducted to improve mobility of OFET, and, to suggest a cost-effective processing condition suitable for industrial application. Three process parameters: boiling point, polarity, and solubility are investigated to further understand the trend of film response to the solvent-assisted technique. We report the high boiling non-polar solvents with relatively high RED values promote highest improvement in molecular packing and formulate crystalline structure of the thin film, which increases the device performance.
4

Photochemical, Photophysical, and Electronic Properties of Fused Ring Systems with Alternating Benzene and Thiophene Units

Wex, Brigitte 12 October 2005 (has links)
No description available.

Page generated in 0.3198 seconds