• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Wet Organic Field Effect Transistor as DNA sensor

Chiu, Yu-Jui January 2008 (has links)
Label-free detection of DNA has been successfully demonstrated on field effect transistor (FET) based devices. Since conducting organic materials was discovered and have attracted more and more research efforts by their profound advantages, this work will focus on utilizing an organic field effect transistor (OFET) as DNA sensor. An OFET constructed with a transporting fluidic channel, WetOFET, forms a fluid-polymer (active layer) interface where the probe DNA can be introduced. DNA hybridization and non-hybridization after injecting target DNA and non-target DNA were monitored by transistor characteristics. The Hysteresis area of transfer curve increased after DNA hybridization which may be caused by the increasing electrostatic screening induced by the increasing negative charge from target DNA. The different morphology of coating surface could also influence the OFET response.
2

Wet Organic Field Effect Transistor as DNA sensor

Chiu, Yu-Jui January 2008 (has links)
<p>Label-free detection of DNA has been successfully demonstrated on field effect transistor (FET) based devices. Since conducting organic materials was discovered and have attracted more and more research efforts by their profound advantages, this work will focus on utilizing an organic field effect transistor (OFET) as DNA sensor.</p><p>An OFET constructed with a transporting fluidic channel, WetOFET, forms a fluid-polymer (active layer) interface where the probe DNA can be introduced. DNA hybridization and non-hybridization after injecting target DNA and non-target DNA were monitored by transistor characteristics. The Hysteresis area of transfer curve increased after DNA hybridization which may be caused by the increasing electrostatic screening induced by the increasing negative charge from target DNA. The different morphology of coating surface could also influence the OFET response.</p>
3

Cellules photovoltaïques organiques à base de nouveaux copolymères à blocs rigide-flexible

Urien, Mathieu 16 October 2008 (has links)
Ce travail de recherche pluridisciplinaire a consisté en l'étude de cellules photovoltaïques organiques à base de nouveaux copolymères à blocs de type rigide-flexible. L'idée était de proposer une alternative aux mélanges donneur/accepteur, dont la morphologie en film est très difficile à contrôler, en élaborant de nouveaux matériaux conjugués capables de s'auto-organiser et de créer une nano-structuration de la couche active, permettant ainsi d'optimiser certains paramètres du processus photovoltaïque (dissociation de l'exciton, conduction des charges vers les électrodes). La première étape a consisté à développer une synthèse simplifiée et versatile de copolymères constitués d'un bloc conjugué donneur (poly(3-hexylthiophène), d'un bloc flexible polystyrène, et d'un accepteur d'électron (C60). La seconde étape a consisté à caractériser ces matériaux originaux en tant que couche active ou compatibilisants dans des dispositifs photovoltaïques organiques et ainsi montrer leur potentiel. / This multidisciplinary work deals with the study of organic photovoltaic cells based on new rod-coil block copolymers. The aim was to replace donor/acceptor blends which are currently limited by poor control over their thin-film morphology. It was expected that the new materials may self-assemble to give a nano-structuration of the active layer, and thereby optimize the principal physical photovoltaic processes, namely exciton separation and conduction of charge-carriers through the film to the electrodes. A versatile and simplified synthesis of rod-coil copolymers consisting of a donor conjugated block [poly(3-hexylthiophene], a flexible block (polystyrene) and an electron acceptor (C60) was developed. The characterization of the new materials demonstrated their potential as an active layer or compatibilizer in photovoltaic devices.
4

Charge Transport and Photo-Physical Studies in Conjugated Polymers, Hybrid Nanocomposites and Devices

Varade, Vaibhav January 2014 (has links) (PDF)
The main motivation of this thesis is derived from the fact that physics of disordered systems like conjugated polymer has yet not achieved as concrete understanding as ordered and crystalline systems such as inorganic semiconductors. Through the work done in this thesis, several efforts have been made in order to understand basic charge transport (hopping, current injection) phenomena and photo-physical properties (photoluminescence quenching, absorption, photoconductivity) in conjugated polymer and their hybrid composites. The thesis consists of 7 chapters. Chapter 1 discusses the background knowledge and information of the general properties of conjugated polymers, quantum dots and their hybrid nanocomposites. Chapter 2 deals with the sample preparation and experimental techniques used in this thesis. Chapter 3 elaborates the temperature and field dependent anisotropic charge transport in polypyrrole. Chapter 4 presents an idea to probe and correlate disorder and transport properties using impedance and Raman spectroscopy. Chapter 5 mainly talks about the doping level dependent photophysical and electrical properties of poly(3-hexylthiophene). Chapter 6 reveals the charge transport phenomena in hybrid composites of poly(3,4-ethyldioxythiophene):polysterene sulfonate (PEDOT:PSS) and cadmium telluride quantum dots. Chapter 1: Conjugated polymers and their hybrid systems are easily processible and cost effective material having huge scope for advanced materials of the future. Although variable range hopping (VRH) is widely accepted to model charge transport in π-conjugated systems, but at very low temperatures, high fields, high carrier concentrations one need to explore other models. Conjugated polymers are anisotropic intrinsically. Therefore, anisotropic charge transport can provide basic insights about the physics of charge hopping. Quantum dots, and their hybrid nanocomposites with semiconducting polymers receiving a huge attention for light emission and photovoltaic purposes. It is important to learn about the charge injection,barrier heights, etc. in order to achieve efficient hybrid devices. Chapter 2: Synthesis of the samples, both conjugated polymers and quantum dots, and fabrication of hybrid devices is an important and integral part of this thesis. An Electropolymerization technique is used for making polymer samples on conducting substrates. This is quite interesting because one can tune doping level, disorder and thickness simultaneously. Hydrothermal process is adopted to get highly aqua-dispersible quantum dots. Samples are characterized by different techniques like Raman spectroscopy, energy dispersive spectroscopy. Photoluminescence, UV-Vis absorption, transmission electron microscopy and atomic force microscopy are used to explore several properties of the polymer and hybrid nanocomposites. Chapter 3: It is known that conjugated polymers are intrinsically one–dimensional materials. Therefore it is important to learn anisotropic behavior of these complex systems. Hence, a comparison of electronic transport to their morphology has been carried out and role of carrier density and disorder is discussed further. Both in-plane and out-of-plane charge transport is studied in electrochemically deposited polypyrrole on platinum. Strong anisotropy is observed in the system which is correlated to granular morphology. Field dependence of anisotropic conductivity is also explored. Field scaling analysis shows that all field dependent curves of conductance at different temperatures can fall on to single master curve. Glazman – Matveev model is used to describe nonlinear conduction in field dependence and nonlinearity exponent is estimated. Disorder and carrier density along with the morphological structure like length and orientation of polymer chains with stacking arrangement of different layers in PPy films play an important role in governing the anisotropy in transport properties. Chapter 4: Two different techniques, namely impedance and Raman spectroscopies are used to probe disorder and transport properties in the polypyrrole. An effort is made to correlate the transport properties to the morphology by probing disorder via two different spectroscopic techniques. Frequency dependence of both real and imaginary part has shown that disorder and inhomogeneity varies in different PPy devices, which thus affect the transport properties like conductivity and mobility. Mobility values along the thickness direction for each sample reveal the impact of disorder on out-of¬plane geometry. A circuit based on consideration of the distributed relaxation times, is successfully used to obtain the best fit for the Cole–Cole plot of various PPy devices. FWHM of the de-convoluted peaks of Raman spectra is attributed to the change in distribution of the conjugation length in the PPy films. Chapter 5: The main focus of this chapter is the qualitative exploration of different photo-physical and electrical properties of electropolymerized poly(3-hexylthiophene) and their dependence on doping level. Photoluminescence quenching, band edge shifting in absorption spectra, electrochromic effect, significant enhancement in photocurrent at optimum doping level, two relaxation behaviors in reactance spectra and presence of negative capacitance at low frequencies are distinct features which are observed in poly(3-hexylthiophene) in this work. Quenching in photoluminescence intensity is attributed to charge transfer occurring between polymer chains and dopant ions. Two semicircles in the Cole-Cole plots refer to two type of relaxation process occurring in bulk layer and at interface. Frequency response of capacitance at higher bias and lo side of frequency shows a negative capacitance due to the relaxation mechanism associated with the space-charge effect. Chapter 6: Synthesis of quantum dots and fabrication of hybrid devices is one of the catchy parts of this chapter. Huge quenching photoluminescence intensity and very high increment (~ 400 %) in photocurrent clearly depict the charge transfer at molecular level. Temperature dependent current–voltage characteristics show the absence of thermionic emission since the barrier height is more than the thermal energy of the carriers. Further analysis confirms that the charge carrier injection of ITO/PPCdTe3/Al device is controlled by tunneling processes. The hybrid system has shown a peculiar transition from direct tunneling to Fowler–Nordheim tunneling mechanism which is because of the change in shape of the barrier height from trapezoidal to triangular type with increase in applied electric field. Chapter 7: The conclusions of the different works presented in this thesis are coherently summarized in this thesis. Thoughts and prospective for future directions are also summed up.
5

Synthesis and photovoltaic applications of novel copolymers based on poly(3-hexylthiophene) / Synthèse et application en cellules solaires organiques de nouveaux copolymères à base de poly(3-hexylthiophène)

Erothu, Harikrishna 25 February 2011 (has links)
Dans cette étude, des copolymères à blocs rigide-flexible comprenant des segments donneur [poly(3-hexylthiophène) régiorégulier, (rr-P3HT)] et accepteurs d’électrons (C60) ont été synthétisés. L’auto-assemblage en masse de ces copolymères à blocs avait pour objectif d’atteindre des morphologies dont la taille des domaines coïncide avec la distance idéale de transport de l’exciton (~10 nm) en vue d’utiliser ces systèmes comme matériaux de couche active dans les cellules photovoltaïques organiques de type P3HT-PCBM.La maîtrise et l'optimisation des conditions de synthèse de rr-P3HT de fonctionnalité terminale bien définie nous ont permis d'accéder à différentes architectures de copolymères linéaires di- et triblocs, constitués de P3HT comme bloc rigide et de polystyrène ou poly(4-vinylpyridine) comme bloc ‘flexible’. La fonctionnalisation du bloc flexible avec des dérivés du fullerène (C60 ou PCBM) a ensuite été réalisée et ces copolymères utilisés comme additifs pour stabiliser la morphologie de la couche active des cellules solaires organiques de type P3HT/PCBM. Les caractéristiques photovoltaïques des matériaux ainsi préparés ont été déterminées et corrélées aux analyses morphologiques de la couche active. / The performance of organic photovoltaic cells mainly depends on the active layer nano-morphology. Rod-coil block copolymers (BCPs) are well known in their ability to self-assemble into well-ordered nanoscopic morphologies. BCPs containing electron-donor and acceptor segments are of particular interest for use in photovoltaic cells because electronic light-excited states exist over distances similar to the typical size of block copolymer domains (~10 nm). Therefore, we designed novel donor-acceptor BCPs to exploit this coincidence in dimensions. This thesis is focused on BCPs based on regioregular poly(3-hexylthiophene) (rr-P3HT) due to its high hole mobility and good processibility from various solvents. Simplified and versatile syntheses of donor-acceptor rod-coil di- and tri- BCPs consisting of the donor block P3HT (rod) and polystyrene or poly(4-vinylpyridine) (coil) blocks to carry the acceptor C60 in different ways were developed. These materials were used as surfactants to stabilize the nano-morphology of reference P3HT: [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) based devices. Photovoltaic characterizations were then tied to copolymer structural data with the help of AFM and a range of complementary characterization techniques.

Page generated in 0.0552 seconds