• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 5
  • 3
  • 2
  • 1
  • Tagged with
  • 39
  • 39
  • 12
  • 12
  • 10
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Low temperature rotation in small molecular groups

Newton, Tony Christopher January 1990 (has links)
No description available.
2

Thermal runaway reaction hazard and decomposition mechanism of the hydroxylamine system

Wei, Chunyang 30 October 2006 (has links)
Chemical reactivity hazards have posed a significant challenge for industries that manufacture, store, and handle reactive chemicals. Without proper management and control of reactivity, numerous incidents have caused tremendous loss of property and human lives. The U.S. Chemical Safety and Hazard Investigation Board (CSB) reported 167 incidents involving reactive chemicals that occurred in the U.S. from 1980 to 2001. According to the report, 35 percent of the incidents were caused by thermal runaway reactions, such as incidents that involved hydroxylamine and hydroxylamine nitrate. The thermal stability of hydroxylamine system under various industrial conditions was studied thoroughly to develop an understanding necessary to prevent recurrence of incidents. The macroscopic runaway reaction behavior of hydroxylamine system was analyzed using a RSST (Reactive System Screening Tool) and an APTAC (Automatic Pressure Tracking Calorimeter). Also, computational chemistry was employed as a powerful tool to evaluate and predict the measured reactivity. A method was proposed to develop a runaway reaction mechanism that provides atomic level ofinformation on elementary reaction steps, in terms of reaction thermochemistry, activation barriers, and reaction rates. This work aims to bridge molecular and macroscopic scales for process safety regarding reactive chemicals and to understand macroscopic runaway reaction behaviors from a molecular point of view.
3

Quantum Mechanical Effects on MOSFET Scaling

Wang, Lihui 10 July 2006 (has links)
This thesis describes advanced modeling of nanoscale bulk MOSFETs incorporating critical quantum mechanical effects such as gate direct tunneling and energy quantization of carriers. An explicit expression of gate direct tunneling for thin gate oxides has been developed by solving the Schroinger equation analytically. In addition, the impact of different gate electrode as well as gate insulation materials on the gate direct tunneling is explored. This results in an analytical estimation of the potential solutions to excessive gate leakage current. The energy quantization analysis involves the derivation of a quantum mechanical charge distribution model by solving the coupled Poisson and Schroinger equations. Based on the newly developed charge distribution model, threshold voltage and subthreshold swing models are obtained. A transregional drain current model which takes into account the quantum mechanical correction on device parameters is derived. Results from this model show good agreement with numeric simulation results of both long-channel and short-channel MOSFETs.The models derived here are used to project MOSFET scaling limits. Tunneling and quantization effects cause large power dissipation, low drive current, and strong sensitivities to process variation, which greatly limit CMOS scaling. Developing new materials and structures is imminent to extend the scaling process.
4

Development of solvation theories focused on solvation structure and electronic structure / 溶媒構造と電子構造に着目した溶媒和理論の開発 / ヨウバイ コウゾウ ト デンシ コウゾウ ニ チャクモクシタ ヨウバイワ リロン ノ カイハツ

Yokogawa, Daisuke 24 September 2008 (has links)
Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第14167号 / 工博第3001号 / 新制||工||1445(附属図書館) / 26477 / UT51-2008-N484 / 京都大学大学院工学研究科分子工学専攻 / (主査)教授 榊 茂好, 教授 田中 一義, 教授 田中 庸裕 / 学位規則第4条第1項該当
5

Room Temperature Gold-Vacuum-Gold Tunneling Experiments

Teague, E. C. (Edgar Clayton), 1941- 08 1900 (has links)
An experiment has been completed which demonstrated quantum mechanical tunneling of electrons between two gold electrodes separated in vacuum. The tunneling current between the gold electrodes has been measured, for fixed voltages of 0.1 and 0.01 volts, as the electrode spacing was varied from a distance of approximately 2.0 nm down to a point where the electrodes touched. Current-voltage characteristics for fixed electrode spacing in the direct tunneling region have also been measured. Numerical calculations of the tunneling current based on the free-electron model of the electrodes and the barrier, an image-potential reduced barrier, and a WKB approximation for the tunneling probability have been performed and compared with Simmons' theory and with the experimental results. Within experimental error the results indicate that an image potential reduced barrier with the modifications suggested by Lang and Kohn gives a close approximation to the true barrier for metal-vacuum-metal tunneling. For the first time, the work function of the electrodes in a tunneling experiment has been deduced from experimental parameters independent of the tunneling device.
6

Exploring Siderophore-Mineral Interaction Using Force Microscopy and Computational Chemistry

Kendall, Treavor Allen 21 April 2003 (has links)
The forces of interaction were measured between the siderophore azotobactin and the minerals goethite (FeOOH) and diaspore (AlOOH) in solution using force microscopy. Azotobactin was covalently linked to a hydrazide terminated atomic force microscope tip using a standard protein coupling technique. Upon contact with each mineral surface, the adhesion force between azotobactin and goethite was two to three times the value observed for the isostructural Al-equivalent diaspore. The affinity for the solid iron oxide surface reflected in the force measurements correlates with the specificity of azotobactin for aqueous ferric iron. Further, the adhesion force between azotobactin and goethite significantly decreases when small amounts of soluble iron are added to the system suggesting a significant specific interaction between the azotobactin and the mineral surface. Changes in the force signature with pH and ionic strength were fairly predictable when considering mineral solubility, the charge character of the mineral surfaces, the molecular structure of azotobactin, and the intervening solution. Molecular and quantum mechanical calculations which were completed to further investigate the interaction between azotobactin and iron/aluminum oxide surfaces, and to more fully understand the force measurements, also showed an increased force affinity for Fe over Al. Ab initio calculations on siderophore fragment analogs suggest the iron affinity can be attributed to increased electron density associated with the Fe-O bond compared to the Al-O bond; an observation that correlates with iron's larger electronegativity compared to aluminum. Attachment of the ligand to each surface was directed by steric forces within the molecule and coulombic interactions between the siderophore oxygens and the metals in the mineral. Chelating ligand pairs coordinated with neighboring metal atoms in a bidentate, binuclear geometry. Upon simulated retraction of azotobactin from each surface, the Fe-O(siderophore) bonds persisted into a higher force regime than Al-O(siderophore) bonds, and surface metals were removed from both minerals. Extrapolation of the model to more realistic hydrated conditions using a PCM model in the quantum mechanical calculations and water clusters in the molecular mechanical model demonstrated that the presence of water energetically favors and enhances metal extraction, making this a real possibility in a natural system. / Ph. D.
7

Studies of Interaction of Small Molecules with Water Condensed Media

Mitlin, Sergey January 2006 (has links)
STUDIES OF INTERACTION OF SMALL MOLECULES WITH WATER CONDENSED MEDIA<br /><br /> The present work reports experimental and theoretical studies of the intermolecular interactions in condensed water media. The chemical objects comprise pristine ice and polar organic substances: acetone, acetaldehyde, methanol and chloroform and bi-component water-organic deposits. The experimental part of the studies includes the Fourier Transform Infrared Reflection Absorption spectral (FTIR RAS) examination of the processes of film growth by vapor deposition on cold metal substrate and subsequent annealing. The theoretical studies include <em>ab initio</em> (<em>MP2</em>) and semi-empirical (<em>B3LYP</em>) calculations on the small water and water-organic clusters and classical molecular dynamics simulations of the adsorption of inert guests (Xe/Rn) on the ice surface. The FTIR RA spectral studies reveal that depending on the deposition conditions condensed water media exist in two principal structural forms: noncrystalline and polycrystalline. The former is characterized by porous structure while the latter exists as a non-porous medium with smooth external interface. On annealing, characteristic spectral changes indicate on a rapid crystallization occurring at a certain temperature range. The initial adsorption of organic molecules is accompanied by the hydrogen-bonded coordination between the functional group of organic species and non-coordinated hydroxyl group of the ice surface, the topology of which depends on the electronic properties of the functional group. The computational studies of small water-organic clusters reveal, in particular, two major coordination minima for carbonyl group: a single hydrogen-bonded in-plane complex and a double hydrogen-bonded in-plane complex. The classical molecular dynamics of Xe/Rn species on the ice interface is consistent with two distinctly different surface adsorption sites: one that delocalized over the entire surface and one that confined to small opening in the top ice layer, disrupted by the thermal molecular motion. The penetration barrier is associated with van der Walls repulsion of guest species from the ordered water hexagonal arrangement. A thermo-disruption of latter leads to a rapid diffusion of guest species inside ice medium.
8

Quantum Mechanical Studies of Charge Assisted Hydrogen and Halogen Bonds

Nepal, Binod 01 May 2016 (has links)
This dissertation is mainly focused on charge assisted noncovalent interactions specially hydrogen and halogen bonds. Generally, noncovalent interactions are only weak forces of interaction but an introduction of suitable charge on binding units increases the strength of the noncovalent bonds by a several orders of magnitude. These charge assisted noncovalent interactions have wide ranges of applications from crystal engineering to drug design. Not only that, nature accomplishes a number of important tasks using these interactions. Although, a good number of theoretical and experimental studies have already been done in this field, some fundamental properties of charge assisted hydrogen and halogen bonds still lack molecular level understanding and their electronic properties are yet to be explored. Better understanding of the electronic properties of these bonds will have applications on the rational design of drugs, noble functional materials, catalysts and so on. In most of this dissertation, comparative studies have been made between charge and neutral noncovalent interactions by quantum mechanical calculations. The comparisons are primarily focused on energetics and the electronic properties. In most of the cases, comparative studies are also made between hydrogen and halogen bonds which contradict the long time notion that the H-bond is the strongest noncovalent interactions.Besides that, this dissertation also explores the long range behavior and directional properties of various neutral and charge assisted noncovalent bonds.
9

Molekülmechanische und quantenchemische Berechnung der räumlichen und elektronischen Struktur von Vanadium(IV)- und Oxo-Rhenium(V)-Chelaten dreizähnig diacider Liganden

Jäger, Norbert January 1998 (has links)
In dieser Arbeit wurden die Molekülstrukturen und die elektronischen Eigenschaften von Vanadium(IV)- und Oxo-Rhenium(V)-Chelaten mit einem kombinierten molekülmechanisch-quantenchemischen Ansatz untersucht, um sterische und elektronische Effekte der Komplexierung mit einem theoretischen Modell zu quantifizieren. Es konnte gezeigt werden, daß auf diese Weise detaillierte Aussagen zu den Bindungsverhältnissen der Metallchelate getroffen werden können. Die Berechnung der Molekülstrukturen gelingt mit exzellenter Übereinstimmung mit den Kristallstrukturen der Komplexe. Die molekülmechanischen Berechnungen erfolgen auf der Grundlage des Extensible Systematic Force Field ESFF und des Consistent Force Field 91 (CFF91). Dabei konnte die hohe Flexibilität und Zuverlässigkeit des regelbasierten ESFF für eine Vielzahl verschiedenster Metallchelate nachgewiesen werden. Aufgrund der mangelhaften Ergebnisse für trigonal-prismatische Komplexgeometrien mit dem ESFF wurden eine Anpassung des CFF91 für derartige Vanadiumkomplexe vorgenommen. Auf Grundlage von theoretischen Ergebnissen wurden die alternativen Strukturen von isoelektronischen Vanadiumkomplexen berechnet und in Übereinstimmung mit experimentellen Daten, theoretischen Modellen der Komplexchemie und empirischen Fakten eine Hypothese für die Ursache der strukturellen Differenzen erarbeitet.<br> Der hier vorgestellte, kombinierte Algorithmus aus kraftfeldbasierter Geometrieoptimierung und single-point-Rechnung an diesen Strukturen ist ein zuverlässiger und relativ schneller Weg Molekülgeometrien von Metallkomplexen zu berechnen. Er kann somit zur Voraussagen von Komplexstrukturen und zur gezielten Modellierung definierter Koordinationsgeometrien verwendet werden. / In this work the molecular structures and the electronic properties of Vanadium(IV)- and Oxo-Rhenium(V)-chelates have been investigated to quantify steric and electronic effects of complexation. It has been shown, that in this way detailed insight can be gained into the bonding conditions of that metal complexes. Molecular mechanic calculations based on the Extensible Systematic Force Field (ESFF) and the Consistent Force Field 91 (CFF91) have been carried out. High flexibility and reliability of the rule based ESFF has been proven for a large variety of different metal chelates. Due to the poor ESFF-results for trigonal-prismatic complex geometries, a fit of the CFF91 for that species was done. Based on the theoretical results the alternative structure of isoelectronical vanadium(IV)- complexes have been calculated and a hypothesis on the reason for the structural differnces have been stated in accordance with experimental results, theoretical models of complex chemistry, and empirical facts. This combined approach of force field based geometry optimization and single point calculation at these structures has been proven to be a reliable and fast way to get molecular structures of metal complexes. It can be used to predict complex structures for modelling destinct coordination geometries.
10

On the Preorganization of the Active Site of Choline Oxidase for Hydride Transfer and Tunneling Mechanism

Quaye, Osbourne 23 June 2009 (has links)
Choline oxidase catalyzes the two-step oxidation of choline to glycine betaine, one of limited osmoprotectants, with the formation of betaine aldehyde as an enzyme bound intermediate. Glycine betaine accumulates in the cytoplasm of plants and bacteria as a defensive mechanism to withstand hyperosmolarity and elevated temperatures. This makes the genetic engineering of relevant plants which lack the property of salt accumulation of economic interest, and the biosynthetic pathway of the osmolyte a potential drug target in microbial infections. The reaction of alcohol oxidation occurs via a hydride ion tunneling transfer from the substrate donor to a flavin acceptor within a highly preorganized active site environment in which choline and FAD are in a rigidly close proximity. In this dissertation, factors contributing to the enzyme-substrate preorganization which is required for the hydride ion tunneling reaction mechanism in choline oxidase have been investigated. Crystallographic studies of wild-type choline oxidase revealed a covalent linkage between C8M atom of the FAD isoalloxazine ring and the N(3) atom of the side chain of a histidine at position 99, and a solvent excluded cavity in the substrate binding domain containing glutamic acid at position 312 as the only negatively charged amino acid residue in the active site of the enzyme. The role of the histidine residue and the contribution of the 8á-N(3)-histidyl covalent linkage of the flavin cofactor to the reaction of alcohol oxidation was investigated in a variant form of choline oxidase in which the histidine residue was replaced with an asparagine. The role of the glutamate residue and the importance of the spatial location of the negative charge at position 312 was investigated in variant forms of choline oxidase in which the negatively charged residue was replaced with glutamine and aspartate. Mechanistic data obtained for the variant enzymes and their comparison to previous data obtained for wild-type choline oxidase are consistent with the residues at positions 99 and 312 being important for relative positioning of the hydride ion donor and acceptor. The residues are important for the enzyme-substrate preorganization that is required for the hydride tunneling reaction in choline oxidase.

Page generated in 0.0535 seconds