Spelling suggestions: "subject:"arganic photovoltaic"" "subject:"0rganic photovoltaic""
41 |
Inorganic and Organic Photovoltaic Materials for Powering Electrochromic SystemsJanuary 2018 (has links)
abstract: ABSTRACT
Autonomous smart windows may be integrated with a stack of active components, such as electrochromic devices, to modulate the opacity/transparency by an applied voltage. Here, we describe the processing and performance of two classes of visibly-transparent photovoltaic materials, namely inorganic (ZnO thin film) and fully organic (PCDTBT:PC70BM), for integration with electrochromic stacks.
Sputtered ZnO (2% Mn) films on ITO, with transparency in the visible range, were used to fabricate metal-semiconductor (MS), metal-insulator-semiconductor (MIS), and p-i-n heterojunction devices, and their photovoltaic conversion under ultraviolet (UV) illumination was evaluated with and without oxygen plasma-treated surface electrodes (Au, Ag, Al, and Ti/Ag). The MS Schottky parameters were fitted against the generalized Bardeen model to obtain the density of interface states (Dit ≈ 8.0×1011 eV−1cm−2) and neutral level (Eo ≈ -5.2 eV). These devices exhibited photoconductive behavior at λ = 365 nm, and low-noise Ag-ZnO detectors exhibited responsivity (R) and photoconductive gain (G) of 1.93×10−4 A/W and 6.57×10−4, respectively. Confirmed via matched-pair analysis, post-metallization, oxygen plasma treatment of Ag and Ti/Ag electrodes resulted in increased Schottky barrier heights, which maximized with a 2 nm SiO2 electron blocking layer (EBL), coupled with the suppression of recombination at the metal/semiconductor interface and blocking of majority carriers. For interdigitated devices under monochromatic UV-C illumination, the open-circuit voltage (Voc) was 1.2 V and short circuit current density (Jsc), due to minority carrier tunneling, was 0.68 mA/cm2.
A fully organic bulk heterojunction photovoltaic device, composed of poly[N-9’-heptadecanyl-2,7-carbazole-alt-5,5-(4’,7’-di-2-thienyli2’,1’,3’-benzothiadiazole)]:phenyl-C71-butyric-acidmethyl (PCDTBT:PC70BM), with corresponding electron and hole transport layers, i.e., LiF with Al contact and conducting/non-conducting (nc) PEDOT:PSS (with ITO/PET or Ag nanowire/PDMS contacts; the illuminating side), respectively, was developed. The PCDTBT/PC70BM/PEDOT:PSS(nc)/ITO/PET stack exhibited the highest performance: power conversion efficiency (PCE) ≈ 3%, Voc = 0.9V, and Jsc ≈ 10-15 mA/cm2. These stacks exhibited high visible range transparency, and provided the requisite power for a switchable electrochromic stack having an inkjet-printed, optically-active layer of tungsten trioxide (WO3), peroxo-tungstic acid dihydrate, and titania (TiO2) nano-particle-based blend. The electrochromic stacks (i.e., PET/ITO/LiClO4/WO3 on ITO/PET and Ag nanowire/PDMS substrates) exhibited optical switching under external bias from the PV stack (or an electrical outlet), with 7 s coloration time, 8 s bleaching time, and 0.36-0.75 optical modulation at λ = 525 nm. The devices were paired using an Internet of Things controller that enabled wireless switching. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2018
|
42 |
Effect of the additional electron acceptor in hybrid ZnO: P3HT:PCBM spin-coated films for photovoltaic applicationRamashia, Thinavhuyo Albert January 2015 (has links)
>Magister Scientiae - MSc / In a quest for low operational and maintenance cost solar cell devices, organic photovoltaics remain a potential source of energy worthy to be explored. In order to generate cost- effective electricity from solar energy, either the efficiency of the solar cells must be improved or alternatively the manufacturing cost must be lowered. The power conversion efficiency (PCE) of organic photovoltaics is influenced by the choice of electron acceptor material, the structure of the polymer, the morphology of the film, the interfaces between the layers and the ratio between the electron acceptor material and the polymer. Nevertheless, efficiency is still limited compared to conventional silicon based PV cells due to low mobility of charge carriers with a short exciton diffusion length in the active layer. Currently, hybrid solar cells have been considered as one of the most promising concepts to address the limited efficiency of organic solar cells. Therefore in this thesis ZnO nanoparticles were synthesized using hydrothermal assisted method. These nanoparticles were incorporated in the poly (3-hexylthiophene) (P3HT):[6,6]-phenyl-C61-butyric acid methyl ester (PCBM), and used as additional acceptors of electrons released from the polymer donor material, with the anticipation to increase the electron mobility, and ultimately the PCE. The thermo-gravimetric analyses revealed improved thermal stability of P3HT upon incorporating ZnO in the polymer matrix. X-ray diffraction analyses revealed that the diffraction peaks shift to higher angles when incorporating the ZnO in the P3HT:PCBM surface and this is consistent with the Raman observation. The photovoltaic properties demonstrated that the addition of ZnO nanoparticles in P3HT:PCBM bulk-heterojunction increases PCE from a baseline of ∼1.0 % in the P3HT:PCBM system to 1.7% in the P3HT:PCBM:ZnO ternary system. The enhanced PCE was due to improved absorption as compared to its counterparts. Upon increasing the addition of ZnO nanoparticles in the P3HT:PCBM matrix, the PCE decreases, due to a large phase separation between the polymer, PCBM and ZnO induced by ZnO agglomerations which resulted in increased surface roughness of the active layer. These findings signify that incorporation of ZnO nanostructures in the P3HT:PCBM polymer matrix facilitates the electron transport in the photoactive layer which results to improved efficiency.
|
43 |
Design, synthesis and characterization of new organic semi-conductors for photovoltaics / Conception, synthèse et caractérisation de nouveaux semi-conducteurs organiques pour le photovoltaïqueChen, Chunxiang 19 July 2016 (has links)
Les cellules photovoltaïques organiques sont une technologie prometteuse pour répondre aux besoins futurs en énergie. Elles présentent de faibles coûts de production, peuvent être réalisées sur substrats flexibles et s'intègrent dans des dispositifs légers. Une voie d'amélioration du rendement de photoconversion est la conception de nouvelles molécules actives présentant des propriétés structurales optimisées. Le présent travail s'inscrit dans cette dynamique: sur la base de calculs utilisant la théorie de la fonctionnelle de la densité, de nouveaux semiconducteurs organiques ont été conçus puis synthétisés. Pour cela, des techniques de synthèses les plus économiques et les moins polluantes possible ont été mises en œuvre. Ainsi, le couplage du benzothiadiazole avec le thiophène carboxhaldéhyde par hétéroarylation directe sans additif ni ligand est utilisé avec succès pour la première fois selon des techniques de chimie verte. Cinq molécules sont ainsi isolées en seulement deux étapes. L'étude de leurs propriétés optiques et électroniques par différentes techniques spectroscopiques (UV/vis, fluorescence) et par électrochimie, de leurs propriétés thermiques, et de leur aptitude à s'auto-organiser ont permis de révéler leur aptitude prometteuse pour une utilisation en photovoltaïque organique. Une série de molécules dérivées du fragment dithiénosilole (DTS) ont été également étudiées par calculs de DFT. Les résultats obtenus montrent que ces dérivés présentent des largeurs de bande interdite très faibles, ce qui constitue un atout pour leur utilisation en cellule photovoltaïque. Ces résultats ont par conséquent motivé leur synthèse. Enfin, un travail purement théorique a été réalisé sur des molécules dérivées des subphthalocyanines de bore. Les calculs effectués révèlent des propriétés électroniques originales pour ces nouveaux matériaux qui devraient mener à des performances intéressantes pour le photovoltaïque organique, ouvrant ainsi la voie vers des matériaux innovants et prometteurs. / Organic solar cells appear as a promising technology to meet future energy requirements, owing to their low production costs, their great flexibility and their ability to be integrated into light devices. Currently, they exhibit modest performances in photoconversion, thus new active molecules with optimized structural properties need to be developed. This work comes in that aim: on the basis of theoretical calculations with density functional theory, new organic semiconductors have been designed and synthesized. For this, the more economical and cleaner syntheses techniques have been employed. Thus, the coupling of the benzothiadiazole with thiophene carboxhaldehyde via direct heteroarylation without additive nor ligand is performed with success for the first time. According to green chemistry techniques, five molecules are thus isolated in only two steps. The study of their optical and electronic properties by means of different spectroscopic techniques (UV/vis, fluorescence) and electrochemistry, of their thermal properties, and of their ability to self-organize have revealed their promising abilities for use in organic photovoltaics. A series of small molecules based on dithienosilole (DTS) core have also been designed via DFT computations. The calculations show their considerable low bandgap. Their syntheses have been conducted. It anticipates their promising potential for organic photovoltaic applications. Finally, a purely theoretical work has been completed on molecules derived from boron subphthalocyanines. The calculations predict interesting electronic properties for these new materials that may lead to promising performances in organic photovoltaics, paving the way for innovative materials.
|
44 |
Solution-Processing of Organic Solar Cells: From In Situ Investigation to Scalable ManufacturingAbdelsamie, Maged 05 December 2016 (has links)
Photovoltaics provide a feasible route to fulfilling the substantial increase in demand for energy worldwide. Solution processable organic photovoltaics (OPVs) have attracted attention in the last decade because of the promise of low-cost manufacturing of sufficiently efficient devices at high throughput on large-area rigid or flexible substrates with potentially low energy and carbon footprints. In OPVs, the photoactive layer is made of a bulk heterojunction (BHJ) layer and is typically composed of a blend of an electron-donating (D) and an electron-accepting (A) materials which phase separate at the nanoscale and form a heterojunction at the D-A interface that plays a crucial role in the generation of charges. Despite the tremendous progress that has been made in increasing the efficiency of organic photovoltaics over the last few years, with power conversion efficiency increasing from 8% to 13% over the duration of this PhD dissertation, there have been numerous debates on the mechanisms of formation of the crucial BHJ layer and few clues about how to successfully transfer these lessons to scalable processes. This stems in large part from a lack of understanding of how BHJ layers form from solution. This lack of understanding makes it challenging to design BHJs and to control their formation in laboratory-based processes, such as spin-coating, let alone their successful transfer to scalable processes required for the manufacturing of organic solar cells. Consequently, the OPV community has in recent years sought out to better understand the key characteristics of state of the art lab-based organic solar cells and made efforts to shed light on how the BHJ forms in laboratory-based processes as well as in scalable processes. We take the view that understanding the formation of the solution-processed bulk heterojunction (BHJ) photoactive layer, where crucial photovoltaic processes take place, is the one of the most crucial steps to developing strategies towards the implementation of organic solar cells with high efficiency and manufacturability. In this dissertation, we investigate the mechanism of the BHJ layer formation during solution processing from common lab-based processes, such as spin-coating, with the aim of understanding the roles of materials, formulations and processing conditions and subsequently using this insight to enable the scalable manufacturing of high efficiency organic solar cells by such methods as wire-bar coating and blade-coating. To do so, we have developed state-of-the-art in situ diagnostics techniques to provide us with insight into the thin film formation process. As a first step, we have developed a modified spin-coater which allows us to perform in situ UV-visible absorption measurements during spin coating and provides key insight into the formation and evolution of polymer aggregates in solution and during the transformation to the solid state. Using this method, we have investigated the formation of organic BHJs made of a blend of poly (3-hexylthiophene) (P3HT) and fullerene, reference materials in the organic solar cell field. We show that process kinetics directly influence the microstructure and morphology of the bulk heterojunction, highlighting the value of in situ measurements. We have investigated the influence of crystallization dynamics of a wide-range of small-molecule donors and their solidification pathways on the processing routes needed for attaining high-performance solar cells. The study revealed the reason behind the need of empirically-adopted processing strategies such as solvent additives or alternatively thermal or solvent vapor annealing for achieving optimal performance. The study has provided a new perspective to materials design linking the need for solvent additives or annealing to the ease of crystallization of small-molecule donors and the presence or absence of transient phases before crystallization. From there, we have extended our investigation to small-molecule (p-DTS (FBTTh2)2) fullerene blend solar cells, where we have revealed new insight into the crucial role of solvent additives. Our work has also touched upon modern polymers, such as PBDTTPD, where we have found the choice of additives impacts the formation mechanism of the BHJ. Finally, we have performed a comparative study of the BHJ film formation dynamics during spin coating versus wire-bar coating of p-DTS(FBTTh2)2: fullerene blends that has helped in curbing the performance gap between lab-based and scalable techniques. This was done by implementing a new apparatus that combines the benefits of rapid thin film drying common to spin coating with scalability of wire-bar coating. Using the new apparatus, we successfully attain similar performance of solar cell devices to the ones fabricated by spin coating with dramatically reduced material waste.
|
45 |
Performance Enhancement of Organic Solar Cells by Interface Layer EngineeringLin, Yuanbao 01 November 2021 (has links)
Organic photovoltaics (OPVs) have received tremendous attention in recent years due to their numerous attractive attributes such as, the potential for high power conversion efficiency (PCE), mechanical flexibility, and the potential for large-scale manufacturing via low-cost techniques. To date, the record PCE values for bulk-heterojunction (BHJ) OPVs exceed 18% for single-junction cells thanks to the rapid development of donors and acceptors materials for active layer. However, the progress of hole-transporting layer (HTL) systems, which is a key device component to reduce the additional performance losses of OPVs, has been limited with only a handful of materials available like PEDOT:PSS and MoOX. In this thesis, I introduce serval materials to unitize as hole-selective contact in high-performance OPVs.
Firstly, the application of liquid-exfoliated two-dimensional transition metal disulfides (TMDs) is demonstrated as the HTLs in OPVs. The solution processing of few-layer WS2 suspensions was directly spun onto transparent indium-tin-oxide (ITO) electrodes yield solar cells with superior power conversion efficiency (PCE), improved fill-factor (FF), enhanced short-circuit current (JSC), and lower series resistance than devices based on PEDOT:PSS. Based on PM6:Y6:PC71BM BHJ layer, the cells with WS2 HTL exhibit the highest PCE of 17% thanks to the favorable photonic structure and reduced bimolecular recombination losses in WS2-based cells.
Next, the self-assembled monolayer (SAM) namely 2PACz is utilized as hole-selective contact directly onto the ITO anode. The 2PACz modifies the work function of ITO while simultaneously affecting the BHJ layer’s morphology deposited atop. This ITO-2PACz anode is utilized in OPV with PM6:BTP-eC9:PC71BM, showing a remarkable PCE of 18.0%. The enhanced performance is attributed to reduced contact-resistance, lower bimolecular recombination losses, and improved charge transport within the BHJ layer. Lastly, the previously 2PACz SAM was functionalized with bromide functional groups, namely Br-2PACz, which is investigated as hole-extracting interlayers in OPVs. The highest occupied molecular orbital (HOMO) energy of Br-2PACz was measured at -6.01 eV, and significant changes the work function of ITO electrodes upon chemical functionalization. OPV cells based on PM6:BTP-eC9:PC71BM using ITO/Br-2PACz anodes exhibit a maximum PCE of 18.4%, outperforming devices with ITO/PEDOT:PSS (17.5%), resulting from lower interface resistance, improved hole transport, and longer carrier lifetimes.
|
46 |
Organické materiály pro molekulární elektroniku a fotoniku / Organic materials for molecular electronics and photonicsVrchotová, Jana January 2019 (has links)
Organická elektronika je dynamické, rychle se rozvíjející odvětví. Studium nových materiálů pro organickou elektroniku je důležitým úkolem jak z hlediska výkonnosti budoucích zařízení a ekonomičnosti procesů, tak z hlediska vlivu jejich používání na životní prostředí. Deriváty diketopyrrolopyrrolu patří mezi zajímavé materiály, které jsou v posledních letech studovány s ohledem na využití v organické elektronice. Dizertační práce je zaměřena na studium těchto materiálů a jejich jak optickou, tak i elektrickou charakterizaci. Součástí je také zhodnocení jejich potenciální aplikace v organické elektronice a návrhy optimalizace jejich výkonu. Teoretická část práce popisuje současný stav na poli organické elektroniky zaměřený na materiály na bázi diketopyrrolopyrrolu. Následující výsledková část shrnuje podstatné výsledky práce a obsahuje stručný úvod k přiloženým publikacím, včetně zhodnocení vlastního přínosu autora k jednotlivým publikacím. Výsledková část dále sestává z 6 vědeckých publikací, které jsou nedílnou součástí této práce a jsou tematicky propojeny v oblasti organické elektroniky, nových materiálů na bázi diketopyrrolopyrrolu a jejich aplikací. Z formálního hlediska je práce na základě čl. 42 odstavce 1b Studijního a zkušebního řádu VUT koncipovaná jako tematicky uspořádaný soubor uveřejněných prací a prací přijatých k publikaci.
|
47 |
Piezoelectric ZnO Nanowires as a Tunable Interface Material for Opto-Electronic ApplicationsSanthanakrishna, Anand Kumar 01 April 2019 (has links)
Organic electronic devices are sustainable alternatives to the conventional electronics, due to their advantages of low cost, mechanical flexibility and wide range of applications. With the myriad list of organic materials available today, the opportunities to imagine new innovative devices are immense. Organic electronic devices such as OLEDs (organic light emitting diode), OPVs (Organic photovoltaics) and OFETs (organic field effect transistors) are among the leading device categories. Although OLED’s have been a huge commercial success, other categories are not lagging.
Radical thinking is necessary to improve on the current performances of these devices. One such thinking is to combine the versatile ZnO (Zinc Oxide) material to organic semiconductors. This can be achieved by exploiting the dual nature of ZnO’s semiconducting and piezoelectric property. Many devices have used ZnO in combination with organic semiconductors for applications ranging from sensors, photovoltaics, OFET’s, memory and many others. The goal of the work is to incorporate the piezoelectric nature of hydrothermally grown ZnO nanowires for Opto-electronic applications.
Although the initial research work was done on incorporating the piezo effect of bulk grown ZnO nanowires in improving the efficiency of an OPV, we discovered a unique memory effect in this device by incorporating ZnO nanowires in an inverted organic photovoltaic architecture. The device switched between a rectifying response in dark to resistive behavior under illumination with a finite transition time and was reversible. Since then we decided to explore few of the opto-electronic applications of this technology.
The synthesis and characterization of crystalline ZnO nanowires, nanoforest and planar ZnO nanofilm are reported along with the application of these ZnO nanostructures in optoelectronic devices. Noncentro symmetry of crystalline ZnO nanostructures makes it an excellent candidate to be used as piezo functional material and these nanostructures are characterized using electrochemical cell containing ZnO electrode as the working electrode.
ZnO nanostructures like nanowires, nanoforest and planar nanofilm are similarly characterized for piezo property using electrochemical technique. Different devices require distinguishing physical and electrical properties of ZnO nanostructures, hence morphology, effect of pre-strain, surface area, surface coverage and thickness of these nanostructures were evaluated for its piezoresponse. It is shown that it was possible to obtain similar piezoresponse among different ZnO nanostructures in addition to taking advantage of the structural benefits among various categories of nanostructures as per requirement.
The presented research can be used as the proof-of-the-concept that ZnO nanostructures can be designed and fabricated with a prestrain to adjust the piezo response of the material under external forces. Therefore, the structure with the prestrain can be employed in various electronic and optical devices where the piezo voltage can be used for adjusting the energy band bending at an interface.
|
48 |
Aggregates of PCBM Molecules: A computational studyKaiser, Alexander, Probst, Michael, Stretz, Holly A., Hagelberg, Frank 15 May 2014 (has links)
Small clusters of [6,6] phenyl-C61-butyric acid methyl ester (PCBM) molecules are analyzed with respect to their equilibrium geometries and associated electronic as well as energetic properties. Plane wave density functional theory (PWDFT) computations, assisted by molecular dynamics (MD) simulations, are performed on systems of the form PCBMn (n = 1-5). The bonding operative in these units is described as a cooperation between HO bonding, involving the C5H9O2 groups of the PCBM molecule, and fullerene-fullerene attraction. The maximally stable structures identified tend to include a dimer motif that combines both interaction modes. The great importance of van-der-Waals effects in stabilizing the studied clusters is demonstrated by comparing the PCBM3 series with and without inclusion of a van-der-Waals term in the PWDFT procedure. The two approaches yield reverse orders of stability. A decreasing tendency in the Kohn-Sham HOMO-LUMO gaps of PCBMn with the cluster size may be used to monitor PCBM aggregation in the active layer of organic photovoltaic devices by optical spectroscopy.
|
49 |
ROUTES TO ANTHRADITHIOPHENE POLYMERS, BENZODITHIOPHENE FUSED POLYAROMATIC HYDROCARBONS AND SEQUENCE SELECTIVE GROWTH OF CONDUCTING POLYMERSHUSSAIN, WASEEM Akhtar 01 December 2021 (has links)
The re-emergence of interest in organic semiconducting small molecules and polymers during past several decades can be attributed to their advantage of utility, flexibility, ease of access, and turnability over silicon based inorganic semiconductors. The library of organic semiconductors containing p-type (hole conducting) and n-type (electron conducting) materials have grown in numbers and efficiency. The p-type semiconducting materials hold an advantage over n-type materials owing to their stability and ease of synthesis. The widespread use of fullerenes (C60 and C70) as n-type materials in organic photovoltaics OPVs and their known downsides of poor absorption in visible and NIR region and limited charge carrier transport have triggered the development of non-fullerene based electron accepting (NFEA) materials . By taking advantage of the electron accepting behavior of cyclopenta[hi]aceanthrylene fragment of C70, we have synthesized a new class of cyclopentafused polyaromatic hydrocarbons (CP-PAHs). These new contorted CP-PAHs have been prepared utilizing the modified version of our previously developed palladium catalyzed cyclopentannulation strategy. The target molecules broaden the scope of annulation chemistry to 1,2-bis(5-hexylthiophen-3-yl)ethyne with aryl dibromo derivatives of anthracene, pyrene and perylene to yield 4,4',4'',4'''-(cyclopenta[hi]aceanthrylene-1,2,6,7-tetrayl)tetrakis(2-hexylthiophene), 4,4',4'',4'''-(dicyclopenta[cd,jk]pyrene-1,2,6,7-tetrayl)tetrakis(2-hexylthiophene) and 1,2,7,8-tetrakis(5-hexylthiophen-3-yl)-1,2,7,8-tetrahydrodicyclopenta[cd,lm]perylene. Scholl cyclodehydrogenation of the cyclopentafused thiophene units with suitably substituted hydrocarbons chains provided access to p-extended polyaromatic systems including 2,5,11,14-tetrahexylrubiceno[5,4-b:6,7-b':12,11-b'':13,14-b''']tetrathiophene, 2,5,11,14-tetrahexyldithieno-[4,5:6,7]indeno[1,2,3-cd]dithieno[4,5:6,7]indeno-[1,2,3-jk]pyrene, and 2,9,12,19-tetrahexyldithieno[4,5:6,7]indaceno[1,2,3-cd]dithieno[4,5:6,7]indaceno[1,2,3-lm]perylene. The fully conjugated p-electronic core of these small molecules provide low optical band gaps, decent mobilities and broad absorption. The HOMO and LUMO energies of these CP-PAHs were found to be in the range of -5.48 to -5.05 eV and -3.48 to -3.14 eV, respectively. Besides showing broad band absorption features, some derivative were found to operate as a p-type semiconductor when tested in organic field effect transistors. Anthradithiophene (ADT) is an isoelectronic analogue of pentacene and became a point of interest. A soluble, and functionalizable ADT derivative, 5,11-dibromoanthradithiophene was prepared and then polymerized utilizing Stille, Sonogashira and Yamamoto cross coupling strategies. The newly developed ADT polymers were found to operate in p-type regime when tested in organic field effect transistors. To explore the effects of solvent on growing polymer chains in step-growth polymerizations, we developed a library of Yamamoto and Glaser polymers. The hypothesis tested was that growing polymer chains can recruit further monomer units to create block character in the growing polymer chains. Our investigations reveals that the solvent conditions altering the polarity of the reaction mixture can cause up to 40% preference of blockiness in the growing polymer chains.
|
50 |
Synthesis and Photophysical Studies of Self-Assembled ChromophoresDemshemino, Innocent Sunday 14 July 2020 (has links)
No description available.
|
Page generated in 0.065 seconds