• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 171
  • 17
  • 11
  • 11
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • Tagged with
  • 296
  • 296
  • 57
  • 56
  • 54
  • 52
  • 50
  • 49
  • 48
  • 46
  • 45
  • 42
  • 40
  • 40
  • 39
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Design, synthesis and characterization of bio/electroactive hybrids confining chromophores in dilute solutions using a helical peptide template /

Kas, Onur Y. January 2008 (has links)
Thesis (Ph. D.)--University of Delaware, 2007. / Principal faculty advisor: Mary E. Galvin-Donoghue, Dept. of Materials Science & Engineering. Includes bibliographical references.
92

Microresonators for organic semiconductor and fluidic lasers /

Vasdekis, Andreas E. January 2007 (has links)
Thesis (Ph.D.) - University of St Andrews, August 2007.
93

Towards room temperature processed and completely flexible organic photovoltaic devices

Miller, Steven Lawrence. January 2008 (has links)
Thesis (Ph. D.)--Rutgers University, 2008. / "Graduate Program in Ceramic and Materials Science and Engineering." Includes bibliographical references.
94

An in-situ study of organic semiconductor thin films for gas sensing

Stokes, Melissa A. January 2008 (has links)
Thesis (Ph. D.)--Rutgers University, 2008. / "Graduate Program in Biomedical Engineering." Includes bibliographical references.
95

Understanding organic thin film properties for microelectronic organic field-effect transistors and solar cells

Roberson, Luke Bennett. January 2005 (has links)
Thesis (Ph. D.)--Chemistry and Biochemistry, Georgia Institute of Technology, 2006. / Mohan Srinivasarao, Committee Member ; David Collard, Committee Member ; Uwe Bunz, Committee Member ; Art Janata, Committee Member ; Marcus Weck, Committee Member ; Laren Tolbert, Committee Chair.
96

Properties of organic and metalorganic molecules on silicon(100)-2 x 1 and at silicon/titanium carbon nitride interface

Bocharov, Semyon. January 2006 (has links)
Thesis (Ph. D.)--University of Delaware, 2006. / Principal faculty advisor: Andrew V. Teplyakov, Dept. of Chemistry and Biochemistry. Includes bibliographical references.
97

Developing non-invasive processing methodologies and understanding the materials properties of solution-processable organic semiconductors for organic electronics

Dickey, Kimberly Christine, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.
98

Acenaphthylene Based CP-PAH Materials for Organic Semiconductors

Yuan, Bingxin 01 August 2016 (has links)
Organic-based electronic devices have received considerable attention because of their presumable advantages over traditional inorganic-based electronics, such as low cost, flexibility, and applicability for large area production. Because of the possible commercialization of electronic products based on organic conducting materials, it is important to develop a variety of organic semiconductors (OSCs) that are categorized as hole transporting (p-type), electron-transporting (n-type) or ambipolar transporting (both hole and electron). P-type OSCs have been the most thoroughly studied. N-type semiconductors are much less common and the charge carrier mobilities have lagged considerably behind their p-type counterparts. Fullerene-based materials are currently the most widely used n-type semiconductors in OPVs. The cage-like structure associated with buckminsterfullerene is made of fused six- and five-member rings. Acenaphthylene is a basic fragment of C60 and has shown potential as a valuable building block for n-type OSCs. To utilize this promising structure, the acenaphthylene unit has been incorporated into a variety of molecular structures to produce both small molecule and polymeric materials. We started with the study of fully unsaturated tetraquinane derivatives, which contain four linearly fused five-membered rings. The desired diacenaphthylpentalenes were synthesized via a palladium-catalyzed dimerization of 1-iodo-2-arylethynyl-acenaphthylenes. The compounds are benchtop and solution stable and behave as hole-transporting or ambipolar semiconductors in organic field effect transistors. The X-ray crystal structure demonstrates the importance the fused naphthalene units as they stabilize the pentalene core with an extended π-framework. The tetraquinane derivatives possess high optical gap materials owing to a forbidden HOMO to LUMO transition, yet have narrow electrochemical gaps and are reduced at small negative potentials giving lowest unoccupied molecular energy levels of -3.57 to -3.74 eV. In addition to the unsaturated tetraquinane derivatives, this thesis also includes work on the creation of macrocycles containing acenaphthylene or cyclopenta[cd]perylene units. The stabilized annulenes, with rigid and π-conjugated structures, have potential application as discotic liquid crystals and porous organic solid. 1H NMR and low resolution mass spectra gave solid proof that a target macrocycle was synthesized; however, the tedious work up and limited purification techniques did not enable large scale synthesis. The investigation of new donor-acceptor copolymers incorporating acenaphthylene or cyclopenta[cd]perylene units was also explored. Since the molecular scaffolds of the desired polymers have structural resemblance and electron affinities compared to bis-imide rylene dyes (NDI and PDI), the resulting materials have relavence for a varety of OSC based devicse. UV-Vis spectroscopy and cyclic voltammetry were utilized to probe the photoelectronic properties of these materials.
99

Synthesis and characterization Naphtho[2,1-b:3,4-b']dithiophene-based organic semiconducting molecules for organic electronics

Li, Zhaoguang 25 February 2015 (has links)
Thienoacenes represent an intriguing class of organic semiconducting molecules with potential applications in organic electronics. Some of thienoacenes have been reported with high charge carrier mobility in organic field-effect transistors (OFET). OFETs based on naphtho[2,1-b:3,4-b’]dithiophene (NDT) exhibited moderate device performance and low-band gap donor-acceptor copolymers based on NDT showed a promising solar power conversion efficiency. In this thesis, four novel series of thienoacenes based on naphtho[2,1-b:3,4-b’]dithiophene backbone were designed and synthesized for OFET applications. Firstly, a novel series of p-type semiconducting naphthodithieno[3,2-b]thiophene derivatives (NDTT-n) composed of six-fused aromatic rings were designed and synthesized (Figure 1). The OFETs based on NDTT-10, and NDTT-12 fabricated by vacuum deposition showed a hole mobility of 0.22 and 0.13 cm2/(Vs), respectively with Ion/Ioff above 107 after annealing at 80 oC. Secondly, the derivatives of NDT fused with benzene rings at the flanks of thiophene, namely NBBT-n (Figure 2) were also designed and synthesized. OFETs based on NBBTF-10 fabricated by vacuum deposition exhibited a hole mobility of 0.35 cm2/(Vs) with a current on/off ratio of 106 107 after annealing at 160 oC. Further extension of π-conjugation of NDTT by incorporating with fused thiophenes leading to a new NBTBT-n series was also developed (Figure 3). The OFETs fabricated by NBTBT-10 showed the hole mobility up to 0.25 cm2/(Vs) with a current on/off ratio of 105 106 after annealing at 220 oC. Lastly, two dimensionally π-extended, butterfly-shaped thienoacenes (Figure 4) were also synthesized. The OFETs based on SMB-10 fabricated by spin-coating showed the best performance in this series with an average mobility of 0.027 cm2/(Vs) for five devices and the highest mobility of 0.038 cm2/(Vs) with a current on/off ratio of 106 107 by from chloroform. Key words: organic semiconducting molecules, organic field-effect transistor, thienoacene, charge carrier mobility.
100

Propriedades Ópticas de Semicondutores Orgânicos à Base de Polímeros Emissores de Luz / Optical proprieties of organic semiconductors based on light emitting polymers.

Alexandre Marletta 31 August 2001 (has links)
Neste trabalho, nós estudamos as propriedades ópticas de absorção e emissão de polímeros conjugados luminescentes baseados no poli(p-fenileno de vinilideno) (PPV). Este material foi processado na forma de filme pelas técnicas casting, spin-coating, self-assembled (SA) e Langmuir-Blodgett (LB), disponíveis no Grupo de Polímeros Bernhard Gross, e caracterizado opticamente e quimicamente As propriedades ópticas do PPV foram investigadas através das seguintes técnicas: fotoluminescência (PL), fotoluminescência por excitação seletiva e absorção óptica. As medidas foram realizadas em função da temperatura da amostra e polarização luz de excitação e emissão. A caracterização química e estrutural do material estudado foi feita através de espectroscopia de infravermelho e analise de elementos. A anisotropia molecular no plano de filmes LB-PPV foi estudada por dicroísmo circular e medidas de birrefringência. Uma nova metodologia do material usado e de preparação de filmes de PPV também foi desenvolvida neste trabalho. Nós adotamos uma rota alternativa que consiste na substituição do contra-íon do precursor, poli(cloreto de tetrahidrotiofeno de xililideno) (PTHT), em solução aquosa por um íon de cadeia longa, o sal de sódio do ácido dodecilbenzenosulfonico (DBS). A vantagem da utilização deste polímero precursor está na possibilidade de converter filmes de PPV com alto grau de conjugação a 115 °C em apenas 3 minutos. Usando o DBS, os filmes de PPV podem ser convertidos sobre atmosfera ambiente e temperaturas de 80 °C, com propriedades ópticas melhores que as obtidas pelos métodos convencionais de conversão de filmes a temperaturas acima de 200 °C sobre vácuo. Filmes estáveis de Langmuir de PTHT-DBS foram transferidas sobre substratos de quartzo. Os filmes LB-PPV apresentaram uma grande anisotropia, demonstrada pelos experimentes de dicroísmo linear observados por absorção óptica e emissão de luz linearmente polarizada e por medidas de birrefringência. Além do mais, filmes SA-PPV foram produzidos por uma metodologia diferente. A adsorção alternada das camadas de PTHT e DBS resulta em filmes de PPV com grande grau de conjugação e espectros com estrutura bem resolvida. Um grande aumento da PL causado pela luz de excitação, na presença de ar, foi observado em filmes de PPV. Este efeito é acompanhado por um deslocamento para o azul do espectro de absorção, resultado da diminuição do comprimento de conjugação efetivo e formação de defeitos estruturais como o grupo carbonila. O aumento da PL pode ser explicado considerando a difusão dos portadores de carga por transferência de energia de via Förster para a região não degradada do filme de PPV, este processo é ativado pela formação de um perfil energético ao longo do filme devido a uma distribuição de segmentos conjugados gerados por foto-oxidação. O modelo teórico baseado nos dados experimentais e considerando o parâmetro geométrico é proposto. Finalmente, a análise de linha espectral da absorção e emissão do PPV com diferentes graus de conjugação foi realizada com sucesso na região das transições eletrônicas entre os estados não localizados p-p* pela análise de Franck-Condon. / In this work, we studied the optical proprieties of absorption and emission of luminescent conjugated polymers based on poly(p-phenylene vinylene) (PPV). This material was processed in thin films by casting, spin-coating, self-assembled (SA) e Langmuir-Blodgett (LB) techniques, available in the Grupo de Polímeros Bernhard Gross, where the samples were characterized optically and chemically. The optical proprieties of PPV were investigated by the following techniques: photoluminescence (PL), photoluminescence excitation spectroscopy and optical absorption. The measurements were carried out in function of sample temperature and polarization of the excitation and the emission light. The chemical and structural characterization of the material was performed by infrared spectroscopy and elemental analysis. The molecular anisotropy in plane of LB-PPV films were studied by circular dichroism and birefringence experiments. A new methodology in the material and film processing was developed in this work. Here we have adopted an alternative approach consisting in substituting the chloride counter ion of a water-soluble precursor, poly(xylylidene tetrahydrothiophenium chloride) (PTHT), by a long chain sulfonic counter ion (DBS) using a sodium salt of dodecylbenzenesulfonic acid. The advantage of this precursor polymer lies in the possibility of converting PPV films with a high conjugation length at 115 °C within only 3 min. Using DBS allowed PPV films to be converted under atmospheric pressure at temperatures as low as 80 oC, with conjugation length and optical properties better than for standard films converted at temperatures above 200 oC under controlled atmospheres. Stable Langmuir PTHT-DBS monolayers were transferred onto quartz substrates in the form of LB films. These LB-PPV films are highly anisotropic as demonstrated by linear dichroism experiments using linearly polarized optical absorption and emission and by birefringence measurements. Furthermore, SA-PPV films were produced by a different methodology. The adsorption on alternate PTHT and DBS layers result in PPV films with high conjugation degree and well-resolved spectral structure. These results are not similar in the literature. A strong PL enhancement was observed in PPV films caused by light excitation in the presence of air. This effect is accompanied by a blue-shift in the absorption spectrum resulting in shortened effective conjugation length and by a formation of defects such as carbonyl groups. The PL enhancement can be explained by an efficient incoherent diffusion of excited carriers to non-degraded PPV segments by Förster transfer, which is activated by the formation of an energy profile in the film due to distribution conjugation lengths generated by photodegradation. A theoretical model based on experimental data and considering the geometric parameters is proposed. Finally, the spectral line shape of absorbance and emission of PPV with different conjugation degrees was analyzed with success in the region of p-p* non-localized electronic transitions by Franck-Condon analysis.

Page generated in 0.0802 seconds