• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 171
  • 17
  • 11
  • 11
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • Tagged with
  • 296
  • 296
  • 57
  • 56
  • 54
  • 52
  • 50
  • 49
  • 48
  • 46
  • 45
  • 42
  • 40
  • 40
  • 39
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Experimental investigation of the interfacial fracture toughness in organic photovoltaics

Kim, Yongjin 01 April 2013 (has links)
The development of organic photovoltaics (OPVs) has attracted a lot of attention due to their potential to create a low cost flexible solar cell platform. In general, an OPV is comprised of a number of layers of thin films that include the electrodes, active layers and barrier films. Thus, with all of the interfaces within OPV devices, the potential for failure exists in numerous locations if adhesion at the interface between layers is inherently low or if a loss of adhesion due to device aging is encountered. To date, few studies have focused on the basic properties of adhesion in organic photovoltaics and its implications on device reliability. In this dissertation, we investigated the adhesion between interfaces for a model multilayer barrier film (SiNx/PMMA) used to encapsulate OPVs. The barrier films were manufactured using plasma enhanced chemical vapor deposition (PECVD) and the interfacial fracture toughness (Gc, J/m2) between the SiNx and PMMA were quantified. The fundamentals of the adhesion at these interfaces and methods to increase the adhesion were investigated. In addition, we investigated the adhesive/cohesive behavior of inverted OPVs with different electrode materials and interface treatments. Inverted OPVs were fabricated incorporating different interface modification techniques to understand their impact on adhesion determined through the interfacial fracture toughness (Gc, J/m2). Overall, the goal of this study is to quantify the adhesion at typical interfaces used in inverted OPVs and barrier films, to understand methods that influence the adhesion, and to determine methods to improve the adhesion for the long term mechanical reliability of OPV devices.
132

Design and Fabrication of Light-Emitting Electrochemical Cells / Design och tillverkning av ljusemitterande elektrokemiska celler

Sandström, Andreas January 2013 (has links)
Glödlampan, en gång symbolen för mänsklig uppfinningsförmåga, är idag på väg att försvinna. Lysdioder och lågenergilampor har istället tagit över då dessa har betydligt längre livstid och högre effektivitet. Den tidigare så hyllade glödlampan anses numera vara en miljöbov, och förbud och restriktioner mot den blir allt vanligare. Trots detta så är de nya alternativen bara att betrakta som provisoriska steg på vägen mot en ideal ljuskälla, som idag tyvärr inte existerar. Lågenergilampor innehåller exempelvis kvicksilver, och utgör därmed ett direkt hot mot en användares hälsa. Både lysdioder och lågenergilampor består även av höga halter av andra tungmetaller, och är väldigt komplicerade att tillverka. Återvinning är därför ett måste, och en fullödig energibesparingsanalys måste ta hänsyn till den betydande energin som går åt vid tillverkningen. Till viss del kan detta lösas genom att göra komponenterna små och ljusstarka, men för att göra en sådan belysning angenäm används istället utrymmeskrävande och ofta energislukande lampskärmar. Lysdioder och lågenergilampor är helt enkelt bra, men långt ifrån perfekta.All elektronisk utrustning är idag beroende av metaller och inorganiska halvledare, vilket gör återvinning viktig och tillverkning komplicerad. Detta är kanske på väg att ändras då även organiska material, t.ex. plast, har visat sig kunna ha elektroniska egenskaper. Idag är organisk elektronik ett hett forskningsområde där material med liknande egenskaper som plast, fast med funktionella elektroniska egenskaper, undersöks och appliceras. Något som gör organiska material extra intressanta är att många kan lösas upp i vätskor, vilket möjliggör för skapandet av bläck. Detta leder i sin tur till möjligheter för användandet av storskaliga trycktekniker, t.ex. tidningspressar och bläckstråleskrivare, vilka leder till en stor kostnadsreduktion och förenklad tillverkning av lysande komponenter. Idag har plast redan ersatt många andra material i en mängd olika tillämpningar. Plastflaskor är vanligare än glasflaskor, och ylletröjor konkurerar idag med kläder gjorda av fleece och andra syntetiska fibrer. Med ljusemitterande plast finns det helt klart en möjlighet att en liknande utveckling kan ske även för lampor.Den här avhandlingen fokuserar på den fortsatta utvecklingen av den ljusemitterande elektrokemiska cellen (LEC), som 1995 uppfanns av Pei et al. LEC-tekniken använder sig av organiska halvledare för att konvertera elektrisk ström till ljus, men även en elektrolyt som möjliggör elektrokemisk dopning. Detta förbättrar den organiska halvledarens elektroniska egenskaper signifikant, vilket leder till mindre resistans och högre effektivitet hos den färdiga lysande komponenten.Visionen för denna och besläktade tekniker har sedan länge varit förverkligandet av en lysande tapet. Den här avhandlingen har försökt närma sig denna vision genom att visa hur en LEC kan uppnå hög effektivitet och lång livslängd, och samtidigt tillverkas i luft med storskaliga produktionsmetoder. Orsaker till en tidigare begränsad livslängd har identifierats och minimerats med hjälp av nya komponentstrukturer och materialformuleringar. En inkapslingsmetod presenteras också, vilken skyddar komponenten från syre och vatten som annars lätt reagerar med det dopade organiska materialet. Detta resulterar i en signifikant förbättring av livslängden.Genom att använda slot-die bestrykning och sprayning, båda kompatibla med rulle-till-rulle tillverkning, har möjligheter för storskalig produktion demonstrerats. Slutligen har en speciell metod för spraymålning av stora lysande ytor utvecklats. / The incandescent light bulb, once the very symbol for human ingenuity, is now being replaced by the next generation of lighting technologies such as the compact fluorescent lamp (CFL) and the light emitting diode (LED). The higher efficiencies and longer operational lifetimes of these new sources of illumination have led to the demise of the classic traditional bulb. However, it should be pointed out that the light sources that are taking over are better, but not perfect. The complex high-voltage electronic circuits and health hazardous materials required for their operation make them far from a sustainable eco-friendly option. Their fabrication is also complex, making the final product expensive. A new path forward might be through the use of plastics or other organic materials. Though not traditionally seen as electronically active, some organic materials do behave like inorganic semiconductors and substantial conductivity can be achieved by doping. Since plastics can be easily molded into complex shapes, or made into an ink using a solvent, it is expected that organic materials could revolutionize how we fabricate electronic devices in the future, and possibly replace inorganic crystals in the same way as plastics have replaced glass and wool for food storage and clothes. This thesis has focused on the light-emitting electrochemical cell (LEC), which was invented by Pei et al. in 1995. It employs organic semiconductors that can convert electricity to light, but also an electrolyte that further enhances the electronic properties of the semiconductor by allowing it to be electrochemically doped. This allows light-emitting films to be driven by a low-voltage source at a high efficiency. Unfortunately, the electrolyte has been shown to facilitate rapid degradation of the device under operation, which has historically severely limited the operational lifetime. Realizing the predicted high efficiency has also proven difficult. The purpose of this thesis is to bridge the gap between the LEC and the CFL. This is done by demonstrating efficient devices and improved operational lifetimes. Possible degradation mechanisms are identified and minimized using novel device architectures and optimized active layer compositions. An encapsulation method is presented, and shown to increase the LEC stability significantly by protecting it from ambient oxygen and water. The thesis further focuses on up-scaled fabrication under ambient air conditions, proving that light-emitting devices are compatible with solution-based and cost-efficient printing. This is achieved by a roll-to-roll compatible slot-die coating and a novel spray-depositing technique that alleviates problems stemming from dust particles and phase separation. A practical ambient air fabrication and a subsequent operation of light-emitting electrochemical cells with high efficiency are thus shown possible.
133

Design and synthesis of and π-stacked conjugated oligomers and polymers

Jagtap, Subodh Prakash 16 March 2012 (has links)
Interchain interactions between π-systems have a strong effect on the properties of conjugated organic materials that find application in devices such as light emitting diodes (OLEDs), organic photovoltaics (OPVs), and field effect transistors (FETs). We have prepared covalently-stacked oligo(1,4-phenylene ethynylene)s and oligo(1,4-phenylene vinylene)s to study the influence of chain-chain interactions on the electronic structure of closely packed conjugated units. These serve as models for segments of conjugated materials in thin film devices. Extension of this concept has allowed us to prepare multi-tiered systems that display the influence of pi-stacking. The stacked architectures were prepared by multi-step synthesis of the scaffolds, followed by metal-catalyzed cross coupling reactions (Sonogashira, Heck, Suzuki couplings) to incorporate the conjugated oligomers. The optical and electrochemical properties of these stacked compounds and polymers were compared to their unstacked linear counterparts. These studies provide a platform for the exploration of the nature of charge carriers and excitons in a broad class of materials that have significant potential in addressing challenges in power generation, lighting and electronics.
134

Proposed Route to Cyclopenta[c]thiophenes via Activated Methylene

Karambelkar, Vineet V 01 August 2008 (has links)
The synthesis of cyclopenta[c]thiophenes has been sparsely reported in the literature owing to several difficulties involved in their synthesis. The present work involves the proposed synthesis of cyclopenta[c]thiophenes and their precursors using activated methylene. Cyclopenta[c]thiophene compounds show promise in the field of polymer and catalysis chemistry. These substituted polythiophenes are potential organic semiconductors and anti-tumor agents. The research presented shows the successful and novel conversion of 3,4-bis(chloromethyl)-2,5-dimethylthiophene and 3,4-bis(bromomethyl)-2,5-dimethylthiophene to a fused 5,5'-fused membered ring which is the precursor to cyclopenta[c]thiophene the sulfone ester, 5-carbomethoxy-5- phenylsulfonyl-1,3-dimethyl-5,6-dihydro-4H-cyclopenta[c]thiophene, in just two steps as compared to four steps previously reported in the literature. This valuable precursor intermediate currently made and proven by characterization is one synthetic step away from a substituted cyclopenta[c]thiophene. A paper has been submitted to Letters in Organic Chemistry to report our work.
135

On-Metal Synthesis of Some Aryl Substituted Rhenium &#951<sup>5</sup> Cyclopenta[C] Pyridazyl Complexes

Sriramulu, Phenahas Gandu 01 August 2010 (has links)
Heterocyclic organic and organometallic compounds (e.g. polypyrrole) and their derivatives have been of great interest for conductive polymers due to their novel properties and environmental stability as compared to non-aromatic analogs (e.g. polyacetylene). We are interested in synthesizing organometallic pyridazines and rhenium pyridazyl complexes for polymer research. SeveraI5,6-fused ring pyridazines (1,2-CsH3(CRNH)(CRN) have been synthesized and characterized. Additionally, pyridazyl complexes of rhenium were synthesized in three steps beginning from fulvenes 1,2-CsH3(COHR)(COR). On-Metal synthesis and characterization of (Re(CO)3 {1,2- CSH3(CRN)(CRN)}] (R=C6RtOMe, C6RtCI, C4H30) and some off-metal pyridazines are reported here. Our research is focused on synthesis of a variety of 5,6- fused ring pyridazines which will serve as synthetic models and building blocks for organic and organometallic conducting polymers. Our research focused on synthesis of 5 membered pyridazines and their organometallic rhenium complexes for polymer studies. Several aryl-substituted 5,6- fused ring pyridazines have been synthesized and characterized.
136

Understanding organic thin film properties for microelectronic organic field-effect transistors and solar cells

Roberson, Luke Bennett 29 November 2005 (has links)
The objective of this work is to understand how the thin film characteristics of p-type organic and polymer semiconductors affect their electronic properties in microelectronic applications. To achieve this goal, three main objectives were drawn out: (1) to create single-crystal organic field-effect transistors and measure the intrinsic charge carrier mobility, (2) to develop a platform for measuring and depositing polymer thin films for organic field-effect transistors, and (3) to deposit polythiophene thin films for inorganic-organic hybrid solar cells and determine how thin film properties effect device performance. Pentacene single-crystal field-effect transistors (OFETs) were successfully manufactured on crystals grown via horizontal vapor-phase reactors designed for simultaneous ultrapurification and crystal growth. These OFETs led to calculated pentacene field-effect mobility of 2.2 cm2/Vs. During the sublimation of pentacene at atmospheric pressure, a pentacene disporportionation reaction was observed whereby pentacene reacted with itself to form a peripentacene, a 2:1 cocrystal of pentacene:6,13-dihydropentacene and 6,13-dihydropentacene. This has led to the proposal of a possible mechanism for the observed disproportionation reaction similar to other polyaromatic hydrocarbons, which may be a precursor for explaining the formation of graphite. Several silicon-based and PET-based field-effect transistor platforms were developed for the measurement of mobility of materials in the thin film state. These platforms were critically examined against one another and the single-crystal devices in order to determine the optimal device design for highest possible mobility data, both theoretically based on silicon technology and commercially based on individual devices on flexible substrates. Novel FET device designs were constructed with a single gate per device on silicon and PET as well as the commonly used common-gate device. It was found that the deplanarization effects and poor gate insulator quality of the individual gate devices led to lower overall performance when compared to the common gate approach; however, good transistor behavior was observed with field modulation. Additionally, these thin films were implemented into inorganic-organic hybrid and purely organic solid-state photovoltaic cells. A correlation was drawn between the thin film properties of the device materials and the overall performance of the device. It was determined that each subsequent layer deposited on the device led to a planarization effect, and that the more pristine the individual layer, the better device performance. The hybrid cells performed at VOC = 0.8V and JSC = 55A/cm2.
137

Organic-inorganic hybrid thin film transistors and electronic circuits

Kim, Jungbae 24 May 2010 (has links)
Thin-film transistors (TFTs) capable of low-voltage and high-frequency operation will be required to reduce the power consumption of next generation electronic devices driven by microelectronic components such as inverters, ring oscillators, and backplane circuits for mobile displays. To produce high performance TFTs, transparent oxide-semiconductors are becoming an attractive alternative to hydrogenated amorphous silicon (a-Si:H)- and organic-based materials because of their high electron mobility vlaues and low processing temperatures, making them compatible with flexible substrates and opening the potential for low production costs. Practical electronic devices are expected to use p- and n-channel TFT-based complementary inverters to operate with low power consumption, high gain values, and high and balanced noise margins. The p- and n-channel TFTs should yield comparable output characteristics despite differences in the materials used to achieve such performance. However, most oxide semiconductors are n-type, and the only high performance, oxide-based TFTs demonstrated so far are all n-channel, which prevents the realization of complementary metal-oxide-semiconductor (CMOS) technologies. On the other hand, ambipolar TFTs are very attractive microelectronic devices because, unlike unipolar transistors, they operate independently of the polarity of the gate voltage. This intrinsic property of ambipolar TFTs has the potential to lead to new paradigms in the design of analog and digital circuits. To date, ambipolar TFTs and their circuits, such as inverters, have shown very limited performance when compared with that obtained in unipolar TFTs. For instance, the electron and hole mobilities typically found in ambipolar TFTs (ATFTs) are, typically, at least an order of magnitude smaller than those found in unipolar TFTs. Furthermore, for a variety of circuits, ATFTs should provide balanced currents during p- and n-channel operations. Regardless of the selection of materials, achieving these basic transistor properties is a very challenging task with the use of current device geometries. This dissertation presents research work performed on oxide TFTs, oxide TFT-based electronic circuits, organic-inorganic hybrid complementary inverters, organic-inorganic hybrid ambipolar TFTs, and ambipolar TFT-based complementary-like inverters in an attempt to overcome some of the current issues. The research performed first was to develop low-voltage and high-performance oxide TFTs, with an emphasis on n-channel oxide TFTs, using high-k and/or thin dielectrics as gate insulators. A high mobility electron transporting semiconductor, amorphous indium gallium zinc oxide (a-IGZO), was used as the n-channel active material. Such oxide TFTs were employed to demonstrate active matrix organic light emitting diode (AMOLED) display backplane circuits operating at low voltage. Then, high-performance hybrid complementary inverters were developed using unipolar TFTs employing organic and inorganic semiconductors as p- and n-channel layers, respectively. An inorganic a-IGZO and pentacene, a widely used organic semiconductor, were used as the n- and p-channel semiconductors, respectively. By the integration of the p-channel organic and n-channel inorganic TFTs, high-gain complementary inverters with high and balanced noise margins were developed. A new approach to find the switching threshold voltage and the optimum value of the supply voltage to operate a complementary inverter was also proposed. Furthermore, we proposed a co-planar channel geometry for the realization of high-performance ambipolar TFTs. Using non-overlapping horizontal channels of pentacene and a-IGZO, we demonstrate hybrid organic-inorganic ambipolar TFTs with channels that show electrical properties comparable to those found in unipolar TFTs with the same channel aspect ratios. A key characteristic of this co-planar channel ambipolar TFT geometry is that the onset of ambipolar operation is mediated by a new operating regime where one of the channels can reach saturation while the other channel remains off. This allows these ambipolar TFTs to reach high on-off current ratios approaching 104. With the new design flexibility we demonstrated organic-inorganic hybrid ambipolar TFT-based complementary-like inverters, on rigid and flexible substrates, that show a significant improvement over the performance found in previously reported complementary-like inverters. From a materials perspective, this work shows that future breakthroughs in the performance of unipolar n-channel and p-channel semiconductors could be directly transposed into ambipolar transistors and circuits. Hence, we expect that this geometry will provide new strategies for the realization of high-performance ambipolar TFTs and novel ambipolar microelectronic circuits.
138

Synthesis and characterization of large linear heteroacenes and their derivatives

Appleton, Anthony Lucas 08 November 2010 (has links)
The work presented in this thesis is primarily concerned with the synthesis and characterization of large, linear heteroacenes and their derivatives. We have been able to significantly expand on the types of materials available for application in organic electronic device architectures. In particular, the work focused on solution processible and novel derivatives of thiadiazoles, diazatetracenes, diazapentacenes, tetrazapentacences, and N,N-dihydrotetraazaheptacene. Extensive computational studies have been performed in order to better understand the optoelectronic properties of these materials. Although no devices have been fabricated that show appreciable hole or electron mobility, the properties of these materials are very promising. Besides our work on organic electronic materials for application in optoelectronic devices, we have also been able to develop, via the Click reaction, a series of aqueous metal sensors for copper (II), nickel (II), and silver (I) based upon fluorescence quenching. The use of a modified Stern-Volmer equation was necessary to fit the data in order to obtain binding constants. The exploration of new materials and their properties in the area of organic electronics is an exciting field for the synthetic organic chemist, as the goals associated with this work strive to impact humanity in a positive manner by reducing energy costs.
139

Quantifying internal electric fields in organic bulk heterojunctions

Morris, Joshua Daniel 11 July 2014 (has links)
Renewable forms of energy are becoming increasingly important as the world quickly depletes its current energy reserves, and rapidly increases the concentration of pollutants in our environment. Solar technology based on organic semiconductors provides a promising candidate to fulfill a portion of our future energy needs in an environmentally sustainable manner. Organic semiconductors are a collection of pi-conjugated small molecules and polymers which can be implemented in photovoltaic cells that are potentially quite low cost. Currently, however, their commercial applications are limited due to a relatively low efficiency in converting sunlight into usable power. The fundamental physics of such devices must be clarified if these materials are to compete with traditional inorganic solar cells. In this dissertation, two emerging experimental tools are implemented in investigations of the internal electric fields present within operating organic photovoltaic cells. The first set of investigations utilizes the vibrational Stark effect to quantify the electric fields which often form at the interfaces between two organic semiconducting materials. Such interfaces are at the heart of the photocurrent generation process in these devices and any electric fields formed crucially alter device performance. We quantitatively determine the interfacial field present in blends of poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) and show that this field depends strongly on annealing conditions. Finally we discuss a correlation between this interfacial electric field, crystalinity and device performance. The second set of investigations take advantage of electric field induced second harmonic generation microscopy to examine the electric potential across active organic solar cells. We again investigate blends of PCBM and P3HT as well as poly(4,4-dioctyldithieno(3,2-b:2',3'-d)silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl) (PSBTBT) and PCBM. In the former we find that the potential drop across the device shifts dramatically over time under illumination, while in the latter we find a nearly linear drop which remains constant through device operation. We then extend our examinations of PSBTBT:PCBM with EFISH by quantifying the extent of space charge accumulation throughout such devices. / text
140

Organic semiconductors for self-assembled monolayer field effect transistors

Lu, Kexin January 2012 (has links)
Molecular self-assembly has recently attracted significant attention for possible application in organic electronic and optoelectronic devices, such as self-assembled monolayer field-effect transistors (SAMFETs) and functional self-assembled integrated circuits. Self-assembly combines the advantages of low temperature solution processability, regio-selective monolayer adsorption and nano-scale control of film thickness. Much progress has been made in improving device performance using self-assembled monolayers (SAMs). However, most SAMFET devices reported to date showed current modulation only with submicrometre channels, with low device yields and poor reproducibility as a result of limited lateral interconnection of the semiconducting layer.In an attempt to address these issues, this thesis presents an investigation of the synthesis and properties of conjugated SAM molecules for use as the charge transporting layer in SAMFETs. Chapter 1 gives a comprehensive introduction to SAM-based surface systems, organic semiconductors and their use in OFETs and SAMFETs. Chapter 2 discusses attempts to design and synthesise p-type conjugated molecules capable of self-assembly on oxide surfaces based on a phenylene-bithiophene semiconducting core. The optical and electrochemical properties, as well as the thermal behaviour of these molecules are studied in detail. This theme is carried over to Chapter 3, which describes the synthesis, chemical and physical characterisation of two families of n-type SAM molecules. These molecules consist of NTCDI cores with hexyl or cyclohexyl chains as end-capping groups. Incorporation of a selection of materials as the active layer in OFETs or SAMFETs to evaluate the charge transport is demonstrated in Chapter 4. Monolayer films based on p-type monochlorosilane-terminated SAM molecules are made using the solution assembly technique and characterised by contact angle and AFM. OFETs made from DH-PTTP by both thermal evaporation and spin coating show high mobilities comparable to the best values reported in the literature. Top-contact SAMFETs show a hole mobility of 1.1 × 10-3 cm2V-1s-1 in air, consistent with those of solution processed DH-PTTP based OFETs. Finally, an overview of the project and some suggestions for future work are presented in Chapter 5.

Page generated in 0.096 seconds