Spelling suggestions: "subject:"arganic semiconductors"" "subject:"0rganic semiconductors""
161 |
Organické materiály pro molekulární elektroniku a fotoniku / Organic materials for molecular electronics and photonicsVrchotová, Jana January 2019 (has links)
Organická elektronika je dynamické, rychle se rozvíjející odvětví. Studium nových materiálů pro organickou elektroniku je důležitým úkolem jak z hlediska výkonnosti budoucích zařízení a ekonomičnosti procesů, tak z hlediska vlivu jejich používání na životní prostředí. Deriváty diketopyrrolopyrrolu patří mezi zajímavé materiály, které jsou v posledních letech studovány s ohledem na využití v organické elektronice. Dizertační práce je zaměřena na studium těchto materiálů a jejich jak optickou, tak i elektrickou charakterizaci. Součástí je také zhodnocení jejich potenciální aplikace v organické elektronice a návrhy optimalizace jejich výkonu. Teoretická část práce popisuje současný stav na poli organické elektroniky zaměřený na materiály na bázi diketopyrrolopyrrolu. Následující výsledková část shrnuje podstatné výsledky práce a obsahuje stručný úvod k přiloženým publikacím, včetně zhodnocení vlastního přínosu autora k jednotlivým publikacím. Výsledková část dále sestává z 6 vědeckých publikací, které jsou nedílnou součástí této práce a jsou tematicky propojeny v oblasti organické elektroniky, nových materiálů na bázi diketopyrrolopyrrolu a jejich aplikací. Z formálního hlediska je práce na základě čl. 42 odstavce 1b Studijního a zkušebního řádu VUT koncipovaná jako tematicky uspořádaný soubor uveřejněných prací a prací přijatých k publikaci.
|
162 |
Organické materiály pro organické polem řízené tranzistory a elektrochemické transistory / Organic materials for organic field-effect transistors and electrochemical transistorsStříteský, Stanislav January 2020 (has links)
Tato práce je zaměřena na studium vlastností organických polovodivých materiálů se zaměřením na jejich vodivost a pohyblivost nosičů náboje. Hlavním cílem této práce je objasnit vztah mezi chemickou strukturou organických polovodičů a jejich vlastnostmi. Teoretická část práce je zaměřena na základy organických polovodičů, transport náboje a přehled vlastností organických polovodivých materiálů, které vedly k jejich aplikaci v polních a elektrochemických tranzistorech. Experimentální část představuje přehled použitých materiálů, způsoby jejich přípravy a charakterizační metody. V rámci výsledkové části bylo vyvinuto nebo optimalizováno několik metod pro přípravu tenkých vrstev a následně byl studován jejich vliv na výkon organických polem řízených tranzistorů. Byly charakterizovány a diskutovány relevantní vlastnosti nových organických polovodivých materiálů se zaměřením na pohyblivost nosičů náboje. Byla charakterizována a diskutována biokompatibilita několika organických polovodičů. Elektrické vlastnosti, stabilita a biokompatibilita elektroaktivních polymerních inkoustů na bázi PEDOT:PSS byla charakterizována a diskutována s ohledem na jejich možné použití v bioelektronice. Nakonec byl zkonstruován organický bioelektronický senzor pro detekci fyziologické odpovědi kardiomyocytů na základě studovaných materiálů.
|
163 |
Novel Concepts for Organic Transistors: Physics, Device Design, and ApplicationsKleemann, Hans 27 October 2021 (has links)
In the first wave of commercialization of organic electronics, about ten years ago, active-matrix organic light-emitting diode (AMOLED) displays became the first large-scale industrial application of organic electronic devices. The victory continues and AMOLED displays attain an ever-increasing market share in the global display industry. In the second wave, organic solar cells are about to enter the mass-production stage, and the possibility for low-cost production on flexible substrates will revolutionize the solar in-dustry. The third wave will be the implementation of organic thin-film transistors for truly flexible, printed, large-area circuits. However, there is a multitude of challenges with regard to device physics, material, and process engineering which need to be overcome to make organic thin-film transistors fit for the step into industrial fabrication.
The focus of this thesis is at organic thin-film transistors, covering the whole spectrum
of device physics, design principles, and the exploration of new applications. In particular, charge carrier transport and injection in vertical organic transistors with ultra-short channel length are investigated in order to derive device architectures suitable for high and ultra-high frequency operation. Self-heating and a strongly thermally activated charge carrier transport at high current densities are identified as the limiting factors for high-frequency operation on low thermal conductivity, flexible substrates. Besides fundamental questions on charge carrier transport, this thesis also addresses questions related to the device fabrication. In particular, new fabrication methods for vertical organic transistors are proposed enabling reliable and stable device operation and integration of ultra-short channel length devices without using costly high-resolution patterning techniques.
Beyond conventional organic thin-film transistors, this thesis explores possible paths for the fourth wave of organic electronics. In this context, mixed ionic-electronic conductors and organic electro-chemical transistors (OECTs) are identified as highly promising approaches for electronic bio-interfaces enabling ultra-sensitive detection of biological signals. Furthermore, these systems show fundamental properties of biological synapses, namely the synaptic plasticity, which renders the possibility to build brain-inspired, neuromorphic networks enabling highly efficient computing. In particular, the combination of OECTs acting as sensor units and self-learning neural networks at once enables the development of intelligent tags for medical applications.
Overall, this thesis adds substantially new insight into the field of organic electronics and draws a vision towards further research and applications. The advancements in the field of vertical organic transistors open new perspectives for the implementation of organic transistors in high-resolution AMOLED displays or radio-frequency identification tags. Furthermore, the exploration of OECTs for neuromorphic computing will create a whole new research field across the disciplines of physics, material, and computer science.
|
164 |
Organické solární články pro fotovoltaickou přeměnu sluneční energie / Organic solar cells for photovoltaic conversion of solar energyŠedina, Martin January 2009 (has links)
This work is focused to study organic materials for solar energy conversion into electricity and characterization of conversion processes. Materials and their blends with semiconducting properties such as photoconductivity were studied. Thin films of organic materials and their blends were prepared by spin-coating method and characterized by optical methods (UV-VIS and photoluminiscence spectroscopy), by current-voltage characteristics, by impedance spectroscopy method, spectral response measurement of photocurrent and method of transient photoconductivity. Structural factors influences the conversion of solar energy into electricity were observed. Based no these results, the materials and their blends useful for photovoltaic applications were determined. The dependence between photoconductivity of thin films and theirs structure was also discussed.
|
165 |
Technologie využívající organických materiálů / Technologies using organic materialsGalbička, Tomáš January 2014 (has links)
There are sumarized some of the basic organic materials for produce of organic parts. Two types of theese materials are introduced PPV and PFV and their derivatives, which tuning their resulting properties in area of electrical, optical, chemical, and thermal parameters. There is designed and created system for mechanical bending of adhesive SMD devies on flexible printed circuit board and compared properties of some conducting adhesives.
|
166 |
Solution Processing of Small Molecule Organic Semiconductors: From In situ Investigation to the Scalable Manufacturing of Field Effect TransistorsNiazi, Muhammad Rizwan 05 1900 (has links)
Solution-processed organic field effect transistors (OFETs) have emerged in recent years as promising contenders to be part of electronic and optoelectronic circuits owing to their compatibility with low-cost high throughput roll-to-roll manufacturing technology. The stringent performance requirements for OFETs in terms of carrier mobility, switching speed, turn-on voltage and uniformity over large areas require the performance of single crystal-based OFETs, but these suffer from major scale-up challenges.
To achieve device performance approaching that of single crystals with scalable, high throughput and industry-compatible solution coating of OFETs requires understanding and ultimately controlling the crystallization of organic semiconductors (OSCs), and producing very low defect-density thin films. In this thesis, we develop an understanding of the process-structure-property-performance relationship in OSCs that bring fresh insights into the nature of solution crystallization and lead to novel ways to control OSC crystallization, and finally help achieve fabrication of high-performance OFETs by scalable, high throughput and industry-compatible blade coating method. We probe the solution crystallization of OSCs by employing a suite of ex & in situ characterization techniques. This leads us to an important finding that OSC molecules aggregate to form a dense amorphous intermediate state and nucleation happens from this intermediate state during blade coating under a wide window of coating conditions.
This phenomenon resembles the so-called two-step nucleation model. Two-step nucleation mediates the crystallization of a wide range of natural and synthetic products ranging from soft materials, such as proteins, biominerals, colloids and pharmaceutical molecules, to inorganic compounds. We go on to show that this nucleation mechanism is generally applicable to achieve formation of high-quality polycrystalline films in a variety of small molecule OSCs and their polymer blends. This phenomenon results in highly textured and well-connected domains, which exhibit reduced interfacial and bulk trap-state densities, helping raise the carrier mobility by one to two orders of magnitude in OFETs in comparison to direct nucleation. We extend the understanding developed for solution crystallization of various acenes and thiophene-based small molecule OSCs to the high-performance benzothieno-benzothiophene (BTBT) based small molecule OSCs. On this end, we develop protocols to fabricate high-quality thin films of BTBT based OSCs by blade coating at industrially compatible coating speeds (>100 mms-1). These films show massive single-domains with very few apparent defects when crystallized via multiple liquid-crystalline phases in two-step nucleation conditions, resulting in an average carrier mobility of ~10 cm2V-1s-1.
To sum up, this thesis develops an understanding of OSC solution crystallization and efficient protocols to control polycrystalline thin film quality for high-performance OFETs. These protocols involve a combination of two-step nucleation pathway, solvent mixtures, polymer blends and device-manufacturing conditions. Our efforts enable to realize high-performance OFETs based on high-quality polycrystalline OSC thin films at industry-compatible conditions.
|
167 |
ROUTES TO ANTHRADITHIOPHENE POLYMERS, BENZODITHIOPHENE FUSED POLYAROMATIC HYDROCARBONS AND SEQUENCE SELECTIVE GROWTH OF CONDUCTING POLYMERSHUSSAIN, WASEEM Akhtar 01 December 2021 (has links)
The re-emergence of interest in organic semiconducting small molecules and polymers during past several decades can be attributed to their advantage of utility, flexibility, ease of access, and turnability over silicon based inorganic semiconductors. The library of organic semiconductors containing p-type (hole conducting) and n-type (electron conducting) materials have grown in numbers and efficiency. The p-type semiconducting materials hold an advantage over n-type materials owing to their stability and ease of synthesis. The widespread use of fullerenes (C60 and C70) as n-type materials in organic photovoltaics OPVs and their known downsides of poor absorption in visible and NIR region and limited charge carrier transport have triggered the development of non-fullerene based electron accepting (NFEA) materials . By taking advantage of the electron accepting behavior of cyclopenta[hi]aceanthrylene fragment of C70, we have synthesized a new class of cyclopentafused polyaromatic hydrocarbons (CP-PAHs). These new contorted CP-PAHs have been prepared utilizing the modified version of our previously developed palladium catalyzed cyclopentannulation strategy. The target molecules broaden the scope of annulation chemistry to 1,2-bis(5-hexylthiophen-3-yl)ethyne with aryl dibromo derivatives of anthracene, pyrene and perylene to yield 4,4',4'',4'''-(cyclopenta[hi]aceanthrylene-1,2,6,7-tetrayl)tetrakis(2-hexylthiophene), 4,4',4'',4'''-(dicyclopenta[cd,jk]pyrene-1,2,6,7-tetrayl)tetrakis(2-hexylthiophene) and 1,2,7,8-tetrakis(5-hexylthiophen-3-yl)-1,2,7,8-tetrahydrodicyclopenta[cd,lm]perylene. Scholl cyclodehydrogenation of the cyclopentafused thiophene units with suitably substituted hydrocarbons chains provided access to p-extended polyaromatic systems including 2,5,11,14-tetrahexylrubiceno[5,4-b:6,7-b':12,11-b'':13,14-b''']tetrathiophene, 2,5,11,14-tetrahexyldithieno-[4,5:6,7]indeno[1,2,3-cd]dithieno[4,5:6,7]indeno-[1,2,3-jk]pyrene, and 2,9,12,19-tetrahexyldithieno[4,5:6,7]indaceno[1,2,3-cd]dithieno[4,5:6,7]indaceno[1,2,3-lm]perylene. The fully conjugated p-electronic core of these small molecules provide low optical band gaps, decent mobilities and broad absorption. The HOMO and LUMO energies of these CP-PAHs were found to be in the range of -5.48 to -5.05 eV and -3.48 to -3.14 eV, respectively. Besides showing broad band absorption features, some derivative were found to operate as a p-type semiconductor when tested in organic field effect transistors. Anthradithiophene (ADT) is an isoelectronic analogue of pentacene and became a point of interest. A soluble, and functionalizable ADT derivative, 5,11-dibromoanthradithiophene was prepared and then polymerized utilizing Stille, Sonogashira and Yamamoto cross coupling strategies. The newly developed ADT polymers were found to operate in p-type regime when tested in organic field effect transistors. To explore the effects of solvent on growing polymer chains in step-growth polymerizations, we developed a library of Yamamoto and Glaser polymers. The hypothesis tested was that growing polymer chains can recruit further monomer units to create block character in the growing polymer chains. Our investigations reveals that the solvent conditions altering the polarity of the reaction mixture can cause up to 40% preference of blockiness in the growing polymer chains.
|
168 |
Elektrické transportní vlastnosti molekulárních materiálů pro pokročilé aplikace / Electrical transport properties of molecular materials for smart applicationsIvancová, Anna January 2012 (has links)
This master´s thesis deals with possibilities of application of new organic molecular materials for electronic devices. Nowadays it is a very attractive field of research, because of the tendencies in industry to miniaturize, reduce production costs and develop new, eco-friendlier, processes of production. The theoretical part of the thesis provides a short overview of organic materials suitable for smart applications and thin films issues including their characterization. The experimental part is dedicated to means how to prepare thin-film electronic components to silicon wafers for thin films field effect transistors. The obtained results in the last part of thesis are discussed about properties of prepared thin films, in the concrete about the electrical transport properties, in the connection with the condition of preparation.
|
169 |
Development of Functional Organic Materials Using Oxygen-Bridged Triarylamine Skeleton as Quasiplanar Structure / 準平面型構造を有する酸素架橋トリアリールアミン骨格に基づいた機能性有機材料の開発Nishimura, Hidetaka 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第19736号 / 工博第4191号 / 新制||工||1646(附属図書館) / 32772 / 京都大学大学院工学研究科物質エネルギー化学専攻 / (主査)教授 村田 靖次郎, 教授 大江 浩一, 教授 小澤 文幸 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
170 |
Investigation of Trap States in Organic Semiconductors for Organic Solar Cells ApplicationsSergeeva, Natalia 06 December 2022 (has links)
Energy is an essential resource for supporting everyday life and economic development. Among numerous approaches which people use to collect energy, photovoltaics stands out for two factors: it allows to obtain electricity by exploiting an abundant source of solar energy and it does it in an environmentally friendly way. In recent years, the development of organic solar cells gained a large interest as this technology offers low-cost, light-weight and flexible devices. Moreover, in contrast to inorganic semiconductors, organics offers a variety of materials with optoelectronic properties tailored in a wide range. To further increase the solar cell efficiency, it is important to study charge-carrier transport, that is strongly influenced by the presence of trap states. Organic semiconductors are particularly prone to the formation of such states due to the weak attraction between molecules. No investigation of trap states has been done for oligothiophenes so far in spite of their excellent performance in organic solar cells. In this work, the blend of the dicyanovinyl end-capped oligothiophene DCV5T-Me and C60 is studied on the presence of trap states. This material showed high efficiencies in vacuum-processed small-molecule organic solar cells with a PCE of the best single-junction cell of 8.3% and a fill factor (FF) of 65.8%. The traps are investigated by using impedance spectroscopy (IS) and thermally stimulated currents (TSC) measurements. The blend DCV5T-Me:C60 (2:1, 80°C) contains two types of electron and a set of hole trap states. A deep Gaussian distributed electron trap at 470 meV (with respect to the transport level) is observed in the blend by IS measurements. Its origin is attributed to the distortion of the natural morphology in the C60 phase due to the intermixing of donor and acceptor molecules. Moreover, a shallow Gaussian distributed electron trap at 100 meV (with respect to the transport level) is observed in neat C60 by IS measurements. Finally, a distribution of shallow trap states with depth below 200 meV (with respect to the transport level) and overall trap density of Nt > 8.7E+16 cm^−3 is indicated in the blend by TSC measurements. The majority of these defects is attributed to hole trap states in the DCV5T-Me phase. The deep electron traps at 470 meV reduce the free charge carrier density and act as recombination centers, leading to trap-assisted recombination. According to drift-diffusion simulations, these deep traps lead to the relative reduction of FF of about 10%. The hole trap states in DCV5T-Me can explain a reduced hole mobility of μh=7E−5 cm^2/(Vs), which is limiting for the solar cell performance as it is two orders of magnitude lower than the electron mobility.
|
Page generated in 0.0912 seconds