• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 2
  • Tagged with
  • 64
  • 64
  • 18
  • 10
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Silene Stereochemistry

Lee, Myong Euy 08 1900 (has links)
The reaction of tert-butyllithium with chloromethylphenylvinylsilane at low temperatures in hexane gave a 48% yield of a mixture of the five isomers of 1,3-dimethyl-1,3-diphenyl-2,4-dineopentyl-1,3-disilacyclobutane, formed by the head-to-tail dimerization of both E- and Z-1-methyl-1-phenyl-2-neopentylsilenes, along with an acyclic dimer. These were separated and their stereochemistry was established by ('1)H- and ('13)C-NMR spectroscopy. The E- and Z-silenes were also trapped as their {4 + 2} cycloadducts with cyclopentadiene, 2,3-dimethyl-1,3-butadiene and anthracene, which also were separated and stereochemically characterized. A consistent mole ratio of 70:30 for the E- and Z-silene adducts is interpreted as evidence for stereochemical induction in the silene generation reaction. It is also suggested that the dimerization of the silenes to give the 1,3-disilacyclobutanes occurs by a nonstereospecific stepwise pathway. When E- or Z-1-methyl-1-phenyl-2-neopentylsilene was generated by the retro-Diels-Alder flow vacuum thermolysis of its corresponding cyclopentadiene or anthracene adduct at temperatures between 400 and 600(DEGREES)C and then trapped with 2,3-dimethyl-1,3-butadiene, the stereochemical distribution of the products is independent of the stereochemistry of the silene precursor, indicating that the silene is not configurationally stable towards cis-trans isomerization at these temperatures. Evidence that the intermolecular ene reaction and the {4 + 2} cycloaddition which occur with 2,3-dimethyl-1,3-butadiene are concerted is presented. When either the E- or Z-silene, generated by the sealed tube thermolysis of its anthracene adduct by 300(DEGREES)C, was trapped with trimethylmethoxysilene, the diastereomer obtained depended on the stereochemistry of the silene precursor, showing that the silene is configurationally stable towards cis-trans isomerization up to 300(DEGREES)C. The temperature dependence of the ratio of the two diastereomers obtained when the silene formed from the pure E- or Z-anthracene adduct was trapped at higher temperatures permitted the determination of an activation energy for the silene isomerization. The activation energies for the E- and Z- and Z- to E-silene isomerization are 45 (+OR-) 6 and 20 (+OR-) 4 kcal mol('-1), respectively. The significance of these values is discussed.
52

Isomerization Reactions in Organosilicon Chemistry

Kwak, Young-Woo 08 1900 (has links)
Dimethylsilene, generated from the thermal gas phase reaction of 1,1-dimethyl-1-silacyclobutane, reacts with alkynes to produce silacyclobutenes or acyclic silanes. The temperature dependence of the product ratios have been determined and the relative reactivities of three different alkynes toward the 1,1-dimethylsilene has been determined. 1-Hydrido-1-methylsilene has been generated by gas phase thermal decomposition from three different precursors. Trapping studies with butadiene and trimethylsilane lead to products expected from dimethylsilylene. The most plausible explanation for these observations is that hydridomethylsilenes undergo a facile isomerization to divalent dimethylsilylene. Cycloaddition of 1,1-dimethylsilene to allene at 600°C in a flow vacuum pyrolysis system affords the first synthesis of 2-methylene-1,1-dimethylsilacyclobutane and smaller amounts of six other products. For static pyrolysis at 421°C, the 2-methylene-1,1-dimethyIsilacyclobutane isomerizes to 1,1-dimethylsilacyclopentenes. The kinetics of gas phase thermal decomposition of cyclopropyltrimethylsilane has been studied over the temperature range, 689.6-751.1 K at pressures near 14 torr. The Arrhenius parameters for formation of allyltrimethylsilane are k_1(sec^-1)=10^14.3 ± 0.1 exp(-56.5 ± 0.2 kcal mol^-1/RT) and those for the formation of E- and Z-1-propenyltrimethyIsilane are k_2(sec^-1)=10^14.9 ± 0.3 exp(-61.9 ± 0.8 kcal mol^-1/RT). The difference between activation energies has been interpreted in terms of anchimeric assistance or the β effect of the silicon atom. The syntheses of 3-trimethylsilyl-1-pyrazoline and 1-trimethyl-2-pyrazoline are described. The thermal decomposition of either pyrazoline affords four different products along with elimination of a nitrogen molecule. It was suggested that the relative rates of methylene-hydrogen migration to radical centers α and γ to silicon are approximately equal. The thermal isomerization of 3-trimethylsilyl-1-pyrazoline to 1-trimethylsilyl-2-pyrazoline has been investigated kinetically at 65°C by proton NMR spectroscopy and the reverse reaction has been detected by gas phase pyrolysis.
53

Studies in asymmetric synthesis

Learmonth, Robin Alec January 1991 (has links)
The concept of combining two well established areas of organic chemistry, viz., organosilicon chemistry and the use of chiral auxiliaries, into a viable, alternative method of asymmetric synthesis has only very recently begun to receive attention. At the outset of this investigation, no asymmetric reactions of silyl enol ethers, chiral by virtue of optically active substituents on the silicon, had been reported. A range of novel chiral silyl enol ethers have thus been prepared from a variety of ketones, including pinacolone, cyclohexanone, and α-tetralone, and employing menthol, borneol, and cholesterol as chiral auxiliaries. These preparations have been achieved via several distinct routes, including a novel convergent approach involving the isolation of either the chloro(menthyloxy)dimethylsilane or the (bornyloxy)chlorodimethylsilane. The MS and NMR spectra of these silyl enol ethers were examined in detail and, in the case of the crystalline cholesteryloxy silyl enol ether, the X-ray structure has been determined. The potential of chloroalkoxysilanes to act as general, chiral derivatizing agents has been established by the preparation of diastereomeric silyl acetal mixtures of racemic secondary alcohols (e.g. I-phenylethanol and 2-octanol). The experimental diastereomeric ratios, obtained by GLC and ¹H NMR spectroscopy, approached the expected value of unity, confirming the potential of the alkoxychlorosilanes as chiral probes. The chiral silyl enol ethers have been successfully oxidized to the corresponding α-siloxy ketones employing MCPBA, MMPP, and 2-(phenylsulphonyl)-3-phenyloxaziridine as oxidizing agents and the diastereomeric excesses obtained, which varied from 0 to 16%, indicated some potential for stereochemical control. Alkylation and hydroxyalkylation reactions of the silyl enol ethers have yielded the expected α-iert-butyl and β-hydroxy ketones in good to excellent material yields, with the enantiomeric excesses, as determined by chiral shift reagent studies, reaching 14%. To improve the stereo control in these reactions, attempts have been made to prepare chiral silyl enol ethers with auxiliaries possessing the potential for transition state complex co-ordination in the reactions under consideration. The preparation of such silyl enol ethers, incorporating the proline-derived auxiliaries, N-methyl-2-hydroxymethylpyrrolidine and 2-methoxymethylpyrrolidine met with only limited success. In an alternative approach, three derivatives of 2,3-dihydroxybornane have been prepared. However, two of these auxiliaries, viz., 3-exo-benzyloxy-2-exo-hydroxybornane and 3-exo-(1-methoxyethoxy)-2-exo-hydroxybornane failed to form silyl enol ethers, even under considerably more vigorous conditions than normally employed. The third derivative, 3,3-ethylenedioxy-2-hydroxybornane has been successfully utilized in the preparation of a pinacolone-derived chiral silyl enol ether. Hydroxyalkylation of this compound with benzaldehyde has yielded the β-hydroxyketone with significantly improved enantiomeric excess (26%) and a transition state complex has been proposed to rationalize this improvement.
54

NMR spectroscopic studies of silicon-containing compounds

Kimber, Barry John January 1974 (has links)
No description available.
55

Silyltitanocene and silylzirconocene complexes : intermediates in catalytic coupling of organosilanes

Aitken, Clare T. (Clare Theresa) January 1986 (has links)
No description available.
56

Development of Silylsilanolates as New Silylating Reagents / 新規シリル化剤シリルシラノラートの開発

Yamagishi, Hiroki 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第24447号 / 理博第4946号 / 新制||理||1706(附属図書館) / 京都大学大学院理学研究科化学専攻 / (主査)教授 依光 英樹, 教授 若宮 淳志, 教授 畠山 琢次 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
57

Development of Novel Synthetic Methods of Organosilicon Compounds Utilizing Silicon-Containing Reactive Intermediates / 含ケイ素反応性中間体を活用した有機ケイ素化合物の新規合成法の開発

Sasaki, Ikuo 25 May 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22663号 / 工博第4747号 / 新制||工||1742(附属図書館) / 京都大学大学院工学研究科合成・生物化学専攻 / (主査)教授 杉野目 道紀, 教授 村上 正浩, 教授 大江 浩一 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
58

Development of Silyl Groups Bearing Bulky Alkoxy Unit and Their Application to Organic Synthesis / 嵩高いアルコキシ部位を有するシリル基の開発と有機合成への利用

Saito, Hayate 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第23027号 / 理博第4704号 / 新制||理||1675(附属図書館) / 京都大学大学院理学研究科化学専攻 / (主査)教授 依光 英樹, 教授 時任 宣博, 教授 若宮 淳志 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
59

New Molecular Transformations Based on Iridium-Catalyzed Activation of C(sp3)-H Bonds / イリジウム触媒によるsp3炭素-水素結合活性化に基づく新分子変換

Torigoe, Takeru 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第20411号 / 工博第4348号 / 新制||工||1674(附属図書館) / 京都大学大学院工学研究科合成・生物化学専攻 / (主査)教授 杉野目 道紀, 教授 村上 正浩, 教授 中尾 佳亮 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
60

Organometallic Precursors to Cyclic Organosilanes

Lim, Thomas Fay-Oy 05 1900 (has links)
This investigation deals with the preparations of cyclic organosilanes via two different types of organometallic precursors: borane adducts to chlorovinylsilanes and tertbutyllithium adducts to chlorovinylsilanes. The regiospecificity of the hydroboration of various types of boranes to chlorovinylsilanes was studied by three different methods. It was found that, by using bulky hydroborating agents, about 80% isomerically pure terminal borane adducts to chlorovinylsilanes could be obtained. While the adducts are potential precursors to silacyclopropanes, when these borane adducts were treated with bases such as sodium methoxide and methyl Grignard, no evidence for silacyclopropane formation was found.

Page generated in 0.0833 seconds