• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 4
  • 3
  • 2
  • Tagged with
  • 13
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Superpixels and their Application for Visual Place Recognition in Changing Environments

Neubert, Peer 03 December 2015 (has links) (PDF)
Superpixels are the results of an image oversegmentation. They are an established intermediate level image representation and used for various applications including object detection, 3d reconstruction and semantic segmentation. While there are various approaches to create such segmentations, there is a lack of knowledge about their properties. In particular, there are contradicting results published in the literature. This thesis identifies segmentation quality, stability, compactness and runtime to be important properties of superpixel segmentation algorithms. While for some of these properties there are established evaluation methodologies available, this is not the case for segmentation stability and compactness. Therefore, this thesis presents two novel metrics for their evaluation based on ground truth optical flow. These two metrics are used together with other novel and existing measures to create a standardized benchmark for superpixel algorithms. This benchmark is used for extensive comparison of available algorithms. The evaluation results motivate two novel segmentation algorithms that better balance trade-offs of existing algorithms: The proposed Preemptive SLIC algorithm incorporates a local preemption criterion in the established SLIC algorithm and saves about 80 % of the runtime. The proposed Compact Watershed algorithm combines Seeded Watershed segmentation with compactness constraints to create regularly shaped, compact superpixels at the even higher speed of the plain watershed transformation. Operating autonomous systems over the course of days, weeks or months, based on visual navigation, requires repeated recognition of places despite severe appearance changes as they are for example induced by illumination changes, day-night cycles, changing weather or seasons - a severe problem for existing methods. Therefore, the second part of this thesis presents two novel approaches that incorporate superpixel segmentations in place recognition in changing environments. The first novel approach is the learning of systematic appearance changes. Instead of matching images between, for example, summer and winter directly, an additional prediction step is proposed. Based on superpixel vocabularies, a predicted image is generated that shows, how the summer scene could look like in winter or vice versa. The presented results show that, if certain assumptions on the appearance changes and the available training data are met, existing holistic place recognition approaches can benefit from this additional prediction step. Holistic approaches to place recognition are known to fail in presence of viewpoint changes. Therefore, this thesis presents a new place recognition system based on local landmarks and Star-Hough. Star-Hough is a novel approach to incorporate the spatial arrangement of local image features in the computation of image similarities. It is based on star graph models and Hough voting and particularly suited for local features with low spatial precision and high outlier rates as they are expected in the presence of appearance changes. The novel landmarks are a combination of local region detectors and descriptors based on convolutional neural networks. This thesis presents and evaluates several new approaches to incorporate superpixel segmentations in local region detection. While the proposed system can be used with different types of local regions, in particular the combination with regions obtained from the novel multiscale superpixel grid shows to perform superior to the state of the art methods - a promising basis for practical applications.
12

Superpixels and their Application for Visual Place Recognition in Changing Environments

Neubert, Peer 01 December 2015 (has links)
Superpixels are the results of an image oversegmentation. They are an established intermediate level image representation and used for various applications including object detection, 3d reconstruction and semantic segmentation. While there are various approaches to create such segmentations, there is a lack of knowledge about their properties. In particular, there are contradicting results published in the literature. This thesis identifies segmentation quality, stability, compactness and runtime to be important properties of superpixel segmentation algorithms. While for some of these properties there are established evaluation methodologies available, this is not the case for segmentation stability and compactness. Therefore, this thesis presents two novel metrics for their evaluation based on ground truth optical flow. These two metrics are used together with other novel and existing measures to create a standardized benchmark for superpixel algorithms. This benchmark is used for extensive comparison of available algorithms. The evaluation results motivate two novel segmentation algorithms that better balance trade-offs of existing algorithms: The proposed Preemptive SLIC algorithm incorporates a local preemption criterion in the established SLIC algorithm and saves about 80 % of the runtime. The proposed Compact Watershed algorithm combines Seeded Watershed segmentation with compactness constraints to create regularly shaped, compact superpixels at the even higher speed of the plain watershed transformation. Operating autonomous systems over the course of days, weeks or months, based on visual navigation, requires repeated recognition of places despite severe appearance changes as they are for example induced by illumination changes, day-night cycles, changing weather or seasons - a severe problem for existing methods. Therefore, the second part of this thesis presents two novel approaches that incorporate superpixel segmentations in place recognition in changing environments. The first novel approach is the learning of systematic appearance changes. Instead of matching images between, for example, summer and winter directly, an additional prediction step is proposed. Based on superpixel vocabularies, a predicted image is generated that shows, how the summer scene could look like in winter or vice versa. The presented results show that, if certain assumptions on the appearance changes and the available training data are met, existing holistic place recognition approaches can benefit from this additional prediction step. Holistic approaches to place recognition are known to fail in presence of viewpoint changes. Therefore, this thesis presents a new place recognition system based on local landmarks and Star-Hough. Star-Hough is a novel approach to incorporate the spatial arrangement of local image features in the computation of image similarities. It is based on star graph models and Hough voting and particularly suited for local features with low spatial precision and high outlier rates as they are expected in the presence of appearance changes. The novel landmarks are a combination of local region detectors and descriptors based on convolutional neural networks. This thesis presents and evaluates several new approaches to incorporate superpixel segmentations in local region detection. While the proposed system can be used with different types of local regions, in particular the combination with regions obtained from the novel multiscale superpixel grid shows to perform superior to the state of the art methods - a promising basis for practical applications.
13

Visual Place Recognition in Changing Environments using Additional Data-Inherent Knowledge

Schubert, Stefan 15 November 2023 (has links)
Visual place recognition is the task of finding same places in a set of database images for a given set of query images. This becomes particularly challenging for long-term applications when the environmental condition changes between or within the database and query set, e.g., from day to night. Visual place recognition in changing environments can be used if global position data like GPS is not available or very inaccurate, or for redundancy. It is required for tasks like loop closure detection in SLAM, candidate selection for global localization, or multi-robot/multi-session mapping and map merging. In contrast to pure image retrieval, visual place recognition can often build upon additional information and data for improvements in performance, runtime, or memory usage. This includes additional data-inherent knowledge about information that is contained in the image sets themselves because of the way they were recorded. Using data-inherent knowledge avoids the dependency on other sensors, which increases the generality of methods for an integration into many existing place recognition pipelines. This thesis focuses on the usage of additional data-inherent knowledge. After the discussion of basics about visual place recognition, the thesis gives a systematic overview of existing data-inherent knowledge and corresponding methods. Subsequently, the thesis concentrates on a deeper consideration and exploitation of four different types of additional data-inherent knowledge. This includes 1) sequences, i.e., the database and query set are recorded as spatio-temporal sequences so that consecutive images are also adjacent in the world, 2) knowledge of whether the environmental conditions within the database and query set are constant or continuously changing, 3) intra-database similarities between the database images, and 4) intra-query similarities between the query images. Except for sequences, all types have received only little attention in the literature so far. For the exploitation of knowledge about constant conditions within the database and query set (e.g., database: summer, query: winter), the thesis evaluates different descriptor standardization techniques. For the alternative scenario of continuous condition changes (e.g., database: sunny to rainy, query: sunny to cloudy), the thesis first investigates the qualitative and quantitative impact on the performance of image descriptors. It then proposes and evaluates four unsupervised learning methods, including our novel clustering-based descriptor standardization method K-STD and three PCA-based methods from the literature. To address the high computational effort of descriptor comparisons during place recognition, our novel method EPR for efficient place recognition is proposed. Given a query descriptor, EPR uses sequence information and intra-database similarities to identify nearly all matching descriptors in the database. For a structured combination of several sources of additional knowledge in a single graph, the thesis presents our novel graphical framework for place recognition. After the minimization of the graph's error with our proposed ICM-based optimization, the place recognition performance can be significantly improved. For an extensive experimental evaluation of all methods in this thesis and beyond, a benchmark for visual place recognition in changing environments is presented, which is composed of six datasets with thirty sequence combinations.

Page generated in 0.0444 seconds