• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 32
  • 14
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Consequence of Functioning at the End Range of Joint Motion: Implications on Anterior Knee Pain

Rodrigues, Pedro A 13 May 2011 (has links)
“Excessive” and/or “delayed” subtalar joint (STJ) pronation has been linked to overuse injuries because of its influence on tibial internal rotation (TIR). The transfer of STJ pronation to TIR occurs via the talocrual joint, believed to have limited transverse plane motion. However, studies have shown the talocrural joint to have more transverse plane motion than once believed, therefore it is feasible that the STJ will only influence the motion of the tibia once this motion has been exhausted. Currently, studies evaluating this relationship have focused on peak joint angles and excursion without reference to the amount of motion available at the ankle joint complex (AJC). Therefore the purpose of these studies were to evaluate whether runners with anterior knee pain (AKP) utilize a greater percentage of their available eversion motion (eversion buffer), evaluate the effects of small eversion buffers on coordination, and evaluate the influence of orthotics on those with AKP and with the smallest eversion buffers. This study found healthy and injured runners, for the most part, presented with no significant differences in traditional pronation related variables. The one exception was peak pronation velocity, where injured runners demonstrated faster velocities. On the other hand injured runners had significantly smaller eversion buffers which lead them to change their coordinative pattern earlier during stance. This difference in pattern also caused the intra-individual coupling variability to peak earlier during stance. Orthotics successfully controlled the kinematics of the AJC and increased the eversion buffer of injured runners and in those displaying the smallest buffers. While orthotics successfully influenced the kinematics of the AJC, they did not influence those of the tibia and knee. These changes at the AJC did not have a strong impact on the coordinative patterns of the lower extremity, however demonstrated a trend toward being able to influence the intra-individual coupling variability. In summary, injured runners demonstrated smaller eversion buffers and changed their coordinative pattern earlier during stance. While orthotics successfully increased the eversion buffer, they did not strongly influence coordination variables. Future studies analyzing pronation related variables in injured populations should evaluate them relative to the available motion at the AJC.
12

Artful Bionics: Pushing the Limits of Visual Expression in Prosthetic Design

Kester, Anna 01 January 2019 (has links)
Traditional prosthetic design revolves around functionality, aiming to hide and downplay an individual's limb difference as much as possible. This may not only negatively affect the user's desire to wear their prosthetic but may also negatively affect their self-confidence and sense of identity. Expression is a primary way to communicate identity, yet some traditional prosthetics may deny expression, leaving users without an immediate means to express themselves apart from the stigmatizing label of 'disability'. This study examines the ability of art when combined with bionic prosthetic technology to change the perception of disability, empower self confidence in prosthetics users, and increase the functional benefits of prosthetics. To elevate prosthetic technology, future designs must not only excel at functionally but must support increased aesthetic quality and allowance for personal expression. These objectives are examined through a participatory approach to design, where kids become active participants in the customization and design of their own prosthetic arms. Involving the user in the creative process can bring higher positive results in prosthetic functionality, expressed personal identity, emotional engagement, and ownership of the prosthetic. This study reports the results of this exploration by designing and hand painting expressive, customizable sleeves for bionic arms in preparation for a clinical trial beginning with Limbitless Solutions.
13

Sit-to-Stand Biomechanics and the Design of an Assistive Knee-Ankle- Foot-Orthosis

Schofield, Jonathon S Unknown Date
No description available.
14

Experiences of caregivers of children with spastic cerebral palsy regarding splinting in Uganda

Tusiime, Christine January 2013 (has links)
>Magister Scientiae - MSc / Splinting is one of the many strategies used globally for managing neuromuscular impairments related to cerebral palsy. In Uganda, some children with cerebral palsy who have been provided with splints return to the physiotherapy department with contractures or deformities. A qualitative research methodological approach was used to understand and describe the experiences of caregivers of children with cerebral palsy regarding splinting in Uganda. The theoretical framework used was the bio-psychosocial model of disability. Purposive sampling was used to select 24 caregivers of children with spastic cerebral palsy who received splints in 2010 at two research settings in Uganda. In-depth interviews were conducted with all the participants at their homes using an interview guide. The data collected was transcribed verbatim and translated from Luganda to English. Inductive content analysis was used to analyse the data. Six themes concerning experiences emerged, namely: caregivers‟ expectations and beliefs; acquisition of splints; knowledge and skills; attitudes to splinting; compliance and benefits of splinting. The results of this study show the overwhelming challenges caregivers face while their children require splinting. When considering providing splints to children, the results highlight the need, to take into account the personal (child) factors, the splint characteristics and the environmental (family and community) factors. There is a need to provide information on splints to both the children with cerebral palsy and their caregivers.
15

Evaluating the Effects of Ankle-Foot-Orthoses, Functional Electrical Stimulators, and Trip-specific Training on Fall Outcomes in Individuals with Stroke

January 2019 (has links)
abstract: This dissertation aimed to evaluate the effectiveness and drawbacks of promising fall prevention strategies in individuals with stroke by rigorously analyzing the biomechanics of laboratory falls and compensatory movements required to prevent a fall. Ankle-foot-orthoses (AFOs) and functional electrical stimulators (FESs) are commonly prescribed to treat foot drop. Despite well-established positive impacts of AFOs and FES devices on balance and gait, AFO and FES users fall at a high rate. In chapter 2 (as a preliminary study), solely mechanical impacts of a semi-rigid AFO on the compensatory stepping response of young healthy individuals following trip-like treadmill perturbations were evaluated. It was found that a semi-rigid AFO on the stepping leg diminished the propulsive impulse of the compensatory step which led to decreased trunk movement control, shorter step length, and reduced center of mass (COM) stability. These results highlight the critical role of plantarflexors in generating an effective compensatory stepping response. In chapter 3, the underlying biomechanical mechanisms leading to high fall risk in long-term AFO and FES users with chronic stroke were studied. It was found that AFO and FES users fall more than Non-users because they have a more impaired lower limb that is not fully addressed by AFO/FES, therefore leading to a more impaired compensatory stepping response characterized by increased inability to generate a compensatory step with paretic leg and decreased trunk movement control. An ideal future AFO that provides dorsiflexion assistance during the swing phase and plantarflexion assistance during the push-off phase of gait is suggested to enhance the compensatory stepping response and reduce more falls. In chapter 4, the effects of a single-session trip-specific training on the compensatory stepping response of individuals with stroke were evaluated. Trunk movement control was improved after a single session of training suggesting that this type of training is a viable option to enhance compensatory stepping response and reduce falls in individuals with stroke. Finally, a future powered AFO with plantarflexion assistance complemented by a trip-specific training program is suggested to enhance the compensatory stepping response and decrease falls in individuals with stroke. / Dissertation/Thesis / Doctoral Dissertation Mechanical Engineering 2019
16

Engineering Modeling, Analysis and Optimal Design of Custom Foot Orthotic

Trinidad, Lieselle Enid 01 September 2011 (has links)
This research details a procedure for the systematic design of custom foot orthotics based on simulation models and their validation through experimental and clinical studies. These models may ultimately be able to replace the use of empirical tables for designing custom foot orthotics and enable optimal design thicknesses based on the body weight and activities of end-users. Similarly, they may facilitate effortless simulation of various orthotic and loading conditions, changes in material properties, and foot deformities by simply altering model parameters. Finally, these models and the corresponding results may also form the basis for subsequent design of a new generation of custom foot orthotics. Two studies were carried out, the first involving a methodical approach to development of engineering analysis models using the FEA technique. Subsequently, for model verification and validation purposes, detailed investigations were executed through experimental and clinical studies. The results were within 15% difference for the experimental studies and 26% for the clinical studies, and most of the probability values were greater than α= 0.05 accepting our null hypothesis that the FEA model data versus clinical trial data are not significantly different. The accuracy of the FEA model was further enhanced when the uniform loading condition was replaced with a more realistic pressure distribution of 70% of the weight in the heel and the rest in the front portion of the orthotic. This alteration brought the values down to within 22% difference of the clinical studies, with the P-values once again showed no significant difference between the modified FEA model and the clinical studies for most of the scenarios. The second study dealt with the development of surrogate models from FEA results, which can then be used in lieu of the computationally intensive FEA-based analysis models in the engineering design of CFO. Four techniques were studied, including the second-order polynomial response surface, Kriging, non-parametric regression and neural networking. All four techniques were found to be computationally efficient with an average of over 200% savings in time, and the Kriging technique was found to be the most accurate with an average % difference of below 0.30 for each of the loading conditions (light, medium and heavy). The two studies clearly indicate that engineering modeling, analysis and design using FEA techniques coupled with surrogate modeling methods offer a consistent, accurate and reliable alternative to empirical clinical studies. This powerful alternative simulation-based design framework can be a viable and valuable tool in the custom design of orthotics based on an individual's unique needs and foot characteristics. With these capabilities, the CFO prescriber would be able to design and develop the best-fit CFO with the optimal design characteristics for each individual customer without relying upon extensive and expensive trial and error ad hoc approaches. Such a model could also facilitate the inspection of robustness of resulting designs, as well as enable visual inspection of the impact of even small changes on the overall performance of the CFO. By adding the results from these studies to the CFO community, the prescription process may become more efficient and therefore more affordable and accessible to all populations and groups.
17

CPO Early Pressure Injury Assessment for Different Skin Tones : A Qualitative Study

Monaghan, Molly, Said, Mariam January 2021 (has links)
The aim of this study was to explore the knowledge, practices, and the sources of knowledge that certified prosthetists/orthotists (CPOs) have experienced regarding early pressure injury assessment for different skin tones. This was examined across different contexts of skin tone demographics using qualitative semi-structured interviews with CPOs from different contexts. Seven participants from six different clinics were recruited using purposive sampling. Of the interviewed participants, five were from Scandinavia, one from South Africa, and one from Nigeria. The interviews were conducted to explore the participants’ own experience of this phenomenon using a phenomenological approach and an interpretivist paradigm. Qualitative content analysis was used to analyse the transcribed interviews inductively. The results consisted of five main categories: Assessment, Standardized Methods, Perceptions of Assessment regarding Skin Tones, Sources of Knowledge regarding Skin Tones, and Relevance of Knowledge Improvement, each with a number of subcategories. There were two main findings. Firstly, CPOs lack systematized knowledge of early pressure injuries irrespective of skin tones. Secondly, many CPOs lack assessment knowledge for darker skin tones as it is only learned from experience and is not taught in education or literature. In conclusion, the field of prosthetics and orthotics must develop to improve systematic early pressure injury knowledge and assessment differences between skin tones.
18

Examination Of The Rehabilitation Protocol Of Traumatic Transfemoral Amputees And How To Prevent Bone Mineral Density Loss

Jenkinson, Emily R 01 January 2017 (has links)
The purpose of this literature review was to identify any adaptations that could be made to the rehabilitation process for Traumatic Transfemoral Amputees. Traumatic Transfemoral Amputation is particularly debilitating with the amputees encountering many obstacles throughout the rehabilitation process. These obstacles can prevent the return to pre-morbid functioning. With an ever-increasing number of amputees within the United States, it is imperative the rehabilitation process be addressed. This literature review addresses possible adjustments in the initial stages of rehabilitation examining the post-operative, pre-prosthetic, and prosthetic rehabilitation stage to enhance the physical functioning for the amputee. This comprehensive literature review encompassing 63 academic and medical journals analyzes the research literature regarding each of the three stages of the post-operative procedure. The literature review synthesizes the research findings to see how procedures may be adapted to reduce the risk of further co-morbidities such as loss of bone mineral density and disuse atrophy. Loss of bone mineral density and disuse atrophy are the major contributing factors to the amputees decreased mobility. Reducing this loss can be addressed within the initial post-operative, pre-prosthetic, and prosthetic rehabilitation stages. Further research is required to examine the efficacy of these alterations in relation to this specific population.
19

Impact of Footwear on Mechanisms of Knee Osteoarthritis Progression

Steiner, Ethan 02 July 2019 (has links) (PDF)
Knee osteoarthritis (OA) is a debilitating disease affecting the entire knee joint by inducing pathological changes to the cartilage and menisci. Currently, the etiology of OA is not completely understood. However, altered gait mechanics, specifically increased joint loading, of OA patients have a clear association with both symptomatic and structural OA progression. Non-surgical intervention tools, such as variable stiffness shoes (VSS), have been developed as a way to decrease loading within the knee joint. However, with external moments being surrogate measures for knee loading, it is unclear if changes in knee moments with the footwear are sufficient to result in a clinical benefit. Therefore, this project’s purpose was to investigate whether a VSS intervention can alter knee joint loading and menisci function in a knee OA population. We used gait analysis, musculoskeletal modeling, and finite element (FE) analysis to determine the effect of VSS on gait mechanics, knee joint contact force, and menisci stress and strain, compared to a control shoe. We found knee moments did not decrease with the VSS intervention. Furthermore, participants who did experience a decrease in knee adduction moment did not always experience a decrease in medial compartment contact force. However, results from our FE modeling of the tibiofemoral joint indicate significant changes in knee joint contact force can influence stress placed on the menisci. Results from this study suggest knee contact forces and tissue stress, not only external moments, should be considered when investigating if VSS can positively impact an OA population.
20

DESIGN AND ANALYSIS OF A 3D-PRINTED, THERMOPLASTIC ELASTOMER (TPE) SPRING ELEMENT FOR USE IN CORRECTIVE HAND ORTHOTICS

Richardson, Kevin Thomas 01 January 2018 (has links)
This thesis proposes an algorithm that determine the geometry of 3D-printed, custom-designed spring element bands made of thermoplastic elastomer (TPE) for use in a wearable orthotic device to aid in the physical therapy of a human hand exhibiting spasticity after stroke. Each finger of the hand is modeled as a mechanical system consisting of a triple-rod pendulum with nonlinear stiffness at each joint and forces applied at the attachment point of each flexor muscle. The system is assumed quasi-static, which leads to a torque balance between the flexor tendons in the hand, joint stiffness and the design force applied to the fingertip by the 3D-printed spring element. To better understand material properties of the spring element’s material, several tests are performed on TPE specimens printed with different infill geometries, including tensile tests and cyclic loading tests. The data and stress-strain curves for each geometry type are presented, which yield a nonlinear relationship between stress and strain as well as apparent hysteresis. Polynomial curves are used to fit the data, which allows for the band geometry to be designed. A hypothetical hand is presented along with how input measurements might be taken for the algorithm. The inputs are entered into the algorithm, and the geometry of the bands for each finger are generated. Results are discussed, and future work is noted, providing a means for the design of a customized orthotic device.

Page generated in 0.0428 seconds