• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Otimização evolucionária multimodal de redes neurais artificiais com evolução diferencial

ZARTH, Antonio Miguel Faustini 31 January 2010 (has links)
Made available in DSpace on 2014-06-12T15:57:14Z (GMT). No. of bitstreams: 2 arquivo3150_1.pdf: 1307018 bytes, checksum: ba6c797961ba6b10284f16cd4227343f (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2010 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Este trabalho propõe uma metodologia de otimização multimodal e simultânea de pesos e arquiteturas de Redes Neurais Artificiais (RNAs) com Evolução Diferencial. O sistema neural híbrido proposto busca por arquiteturas de forma construtiva e realiza o ajuste dos pesos invasivamente, dispensando assim o uso de algoritmos de treinamento por correção de erros. A motivação para o desenvolvimento do presente trabalho é propor uma abordagem que contorne a sensibilidade natural dos métodos construtivos e invasivos aos mínimos locais , tanto na busca de arquiteturas, quanto no ajuste dos pesos das RNAs. Para isto, utilizou-se uma estraté- gia implícita de manutenção da diversidade inspirada na computação evolucionária paralela. A combinação desta estratégia em um sistema neural híbrido, assim como sua adaptação em uma metodologia construtiva e invasiva, é a principal inovação deste trabalho. Como base evolucionária da metodologia proposta, foram utilizadas a Evolução Diferencial em sua forma original e também uma recente variação deste algoritmo, a Evolução Diferencial baseada em Oposição. Desta forma, esta dissertação possui dois objetivos primários: (1) avaliar a performance da metodologia proposta comparando com outros sistemas neurais híbridos encontrados na literatura; (2) avaliar e comparar o desempenho dos dois algoritmos evolucionários utilizados na otimização de redes neurais. Os experimentos foram conduzidos com o propósito de otimizar redes Multi-Layer Perceptron (MLP) para problemas de classificação. Os critérios utilizados para análise de performance do método foram a capacidade de generalização, tamanho da arquitetura encontrada e tempo de convergência. Os resultados obtidos indicam que o método proposto possui grande capacidade de generalização com qualidade de resposta superior ou equivalente a muitos métodos encontrados na literatura, e geralmente com menor arquitetura. Além do mais, a metodologia multimodal proposta obteve estes bons resultados com velocidade plausível, necessitando de poucos segundos para convergir. Estas análises ressaltam a boa performance geral do sistema neural híbrido proposto, cuja característica uni-modular sugere que bons resultados podem ser obtidos sem excessiva complexidade e em tempo hábil

Page generated in 0.0541 seconds