• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 18
  • 2
  • 2
  • 1
  • Tagged with
  • 64
  • 26
  • 22
  • 22
  • 18
  • 17
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Role of Angiotensin II, Glutamate, Nitric Oxide and an Aldosterone-ouabain Pathway in the PVN in Salt-induced Pressor Responses in Rats

Gabor, Alexander January 2012 (has links)
High salt intake contributes to the development of hypertension in salt-sensitive humans and animals and the mechanistic causes are poorly understood. In Dahl salt-sensitive (S) but not salt-resistant (R) rats, high salt diet increases cerebrospinal fluid (CSF) [Na+] and activates an aldosterone-mineralocorticoid receptor-epithelial sodium channel-endogenous ouabain (MR-ENaC-EO) neuromodulatory pathway in the brain that enhances the activity of sympatho-excitatory angiotensinergic and glutamatergic pathways, leading to an increase in sympathetic nerve activity (SNA) and blood pressure (BP). We hypothesize that high salt diet in Dahl S rats enhances Ang II release in the paraventricular nucleus (PVN), causing a decrease in local nitric oxide (NO) action and an increase in local glutamate release thereby elevating SNA, BP and heart rate (HR). The present study evaluated the effects of agonists or blockers of MR, ENaC, EO, nitric oxide synthase (NOS) or glutamate and AT1-receptors on the BP and HR responses to acute infusions of Na+ rich aCSF, intracerebroventricularly (icv), or in the PVN of Dahl S, R or Wistar rats or to high salt diet in Dahl S and R rats. In Wistar rats, aldosterone in the PVN enhanced the BP and HR responses to infusion of Na+ rich aCSF in the PVN, but not in the CSF, and only the enhancement was prevented by blockers of MR, ENaC and EO in the PVN. AT1-receptor blockers in the PVN fully blocked the enhancement by aldosterone and the responses to infusion of Na+ rich aCSF icv, or in the PVN. Na+ rich aCSF in the PVN caused larger increases in BP and HR in Dahl S vs. R rats and the responses to Na+ were fully blocked by an AT1-receptor blocker in the PVN. BP and HR responses to a NOS blocker in the PVN were the same, but L-NAME enhanced Na+ effects more in Dahl R than S rats. High salt diet attenuated increases in BP from L-NAME in the PVN of Dahl S but not R rats. AT1 and glutamate receptor blockers candesartan and kynurenate in the PVN decreased BP in Dahl S but not R rats on high salt diet. At the peak BP response to candesartan, kynurenate in the PVN further decreased BP whereas candesartan did not further decrease BP at the peak BP response to kynurenate. Our findings indicate that both an acute increase in CSF [Na+] and high salt intake in Dahl S rats increases AT1-receptor activation and decreases NO action in the PVN thereby contributing to the pressor responses to Na+ and presumably, to dietary salt-induced hypertension. The increased BP response to AT1-receptor activation in the PVN of Dahl S is mediated by enhanced local glutamate receptor activation. An MR-ENaC-EO pathway in the PVN can be functionally active and further studies need to assess its role in Dahl S rats on high salt intake.
32

Physiological Role of the α<sub>2</sub>-Isoform of the Na, K-ATPase in the Regulation of Cardiovascular Function

Rindler, Tara N. January 2012 (has links)
No description available.
33

GRP78/BiP is Involved in Ouabain-induced Endocytosis of the Na/K-ATPase in LLC-PK1 Cells

Kesiry, Riad 27 September 2004 (has links)
No description available.
34

Signaling Function of Na/K-ATPase in Ouabain-induced Regulation of Intracellular Calcium

Yuan, Zhaokan January 2005 (has links)
No description available.
35

Na/K-ATPase Signaling: from Bench to Bedside

Li, Zhichuan 18 December 2008 (has links)
No description available.
36

Isoform Specific Effect of Ischemia/Reperfusion on Cardiac Na,K-ATPase: Protection by Ouabain Preconditioning

Stebal, Cory J. 14 July 2009 (has links)
No description available.
37

Ouabain Regulates Caveolin-1 Vesicle Trafficking by a Src-Dependent Mechanism

Harris, Tanoya L. 12 June 2012 (has links)
No description available.
38

A Model for Domain-Specific Regulation of Src kinase by alpha-1 subunit of Na/K-ATPase

Banerjee, Moumita January 2013 (has links)
No description available.
39

Protein Participants of Cytosolic Internalization of the Ouabain-bound Na+/K+ATPase Receptor in Human B-3 Lens Epithelial Cells

Stricker, Joshua Lysle 09 May 2018 (has links)
No description available.
40

Role of the Ouabain-Binding Site of Na,K-ATPase in Saline Loading and DOCA-Salt Hypertension

Loreaux, Elizabeth L. 26 September 2008 (has links)
No description available.

Page generated in 0.0285 seconds