• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of Pt on agglomeration and Ge out-diffusion in Ni(Pt) germanosilicide

Jin, Lijuan, Pey, Kin Leong, Choi, Wee Kiong, Fitzgerald, Eugene A., Antoniadis, Dimitri A., Chi, D.Z. 01 1900 (has links)
The effect of Ni and Ni(Pt) alloy with ~5 and 10 at. % Pt on the agglomeration and Ge out-diffusion in Nickel germanosilicide formed on Si₀.₇₅Ge₀.₂₅(100) has been studied. A remarkable improvement in the agglomeration behavior with increasing Pt atomic percentage is observed by sheet resistance measurements and scanning electron microscopy (SEM). In addition, x-ray diffraction (XRD) shows that only NiSiGe or Ni(Pt)SiGe phase exists from 400 to 800°C. However, Ge out-diffusion from the monogermanosilicide grains is obvious at 600°C and 700°C for Ni/SiGe and Ni(Pt)(Pt at.%~10%)/SiGe, respectively, evident by XRD and micro-Raman spectroscopy. The improved melting temperature of Ni(Pt)SiGe solution compared to that of NiSiGe is the likely reason of seeing better surface morphology and suppressing Ge out-diffusion of the germanosilicide grains observed. / Singapore-MIT Alliance (SMA)
2

Fabrication and Characterization of Si-on-SiC Hybrid Substrates

Li, Ling-Guang January 2013 (has links)
In this thesis, we are making a new approach to fabricate silicon on insulator (SOI). By replacing the buried silicon dioxide and the silicon handling wafer with silicon carbide through hydrophilic wafer bonding, we have achieved silicon on crystalline silicon carbide for the first time and silicon on polycrystalline silicon carbide substrates at 150 mm wafer size. The conditions for the wafer bonding are studied and the surface and bond interface are characterized. Stress free and interfacial defect free hybrid wafer bonding has been achieved. The thermally unfavourable interfacial oxide that originates from the hydrophilic treatment has been removed through high temperature annealing, denoted as Ox-away. Based on the experimental observations, a model to explain the dynamics of this process has been proposed. Ox-away together with spheroidization are found to be the responsible theories for the behaviour. The activation energy for this process is estimated as 6.4 eV. Wafer bonding of Si and polycrystalline SiC has been realised by an intermediate layer of amorphous Si. This layer recrystallizes to some extent during heat treatment. Electronic and thermal testing structures have been fabricated on the 150 mm silicon on polycrystalline silicon carbide hybrid substrate and on the SOI reference substrate. It is shown that our hybrid substrates have similar or improved electrical performance and 2.5 times better thermal conductivity than their SOI counterpart. 2D simulations together with the experimental measurements have been carried out to extract the thermal conductivity of polycrystalline silicon carbide as κpSiC = 2.7 WK-1cm-1. The realised Si-on-SiC hybrid wafer has been shown to be thermally and electrically superior to conventional SOI and opens up for hybrid integration of silicon and wide band gap material as SiC and GaN.
3

Modélisation et simulation numérique de l'exo-diffusion du bore dans les oxydes encapsulés des technologies CMOS déca-nanométriques

Pelletier, Bertrand 13 July 2011 (has links)
Cette étude s’est portée sur l’interaction des empilements diélectriques nitrure/oxyde avec la répartition du bore dans les zones sources et drain après le recuit d’activation. L’utilisation des procédés de dépôt des couches de nitrure et d’oxyde réalisées à basse température a permis de limiter l’impact de ces étapes de dépôt sur les performances électriques du dispositif. En revanche, des budgets thermiques de dépôt plus faibles induisent également une concentration d’hydrogène plus importante dans les films. Cette accumulation d’hydrogène dans les couches diélectriques en contact avec les zones source et drain augmente la quantité de bore pouvant diffuser depuis le silicium vers l’oxyde, ce phénomène entraine des modifications de la répartition du bore dans les zones implantées et par conséquent une modification des performances électriques du transistor. Au cours de ces travaux nous avons développé un modèle physique couplant les échanges d’hydrogène durant le recuit entre les couches de diélectrique et la diffusion du bore entre le substrat et l’oxyde. Ce modèle a été validé d’une part en simulant les profils de bore après recuit en fonction des différentes conditions de dépôt nitrure et oxyde, et d’autre part en couplant des mesures de contrainte mécanique avec des mesures de désorption thermique d’hydrogène. Ces travaux ont mis en évidence deux mécanismes de régulation de l’hydrogène dans la couche d’oxyde pendant le recuit. Le premier est le rôle de l’encapsulation du nitrure, la diffusion de l’hydrogène dans les nitrures étant plus faible que dans l’oxyde une partie de l’hydrogène dans l’oxyde en dessous est bloqué dans la couche durant le recuit. Le deuxième est le rôle du nitrure comme source d’hydrogène dans l’empilement. / This study has focused on the interaction of dielectric stacks nitride/oxide with the boron distribution in the source and drain areas after the activation annealing. The low temperature deposition processes of nitride and oxide layers limit the impact of these deposition steps on the electrical performance of the device. However the thermal budgets of lower deposit also induce a higher concentration of hydrogen. This hydrogen accumulation in the dielectric layer in contact with the source and drain regions increases the boron diffusion into the silicon oxide and causing modification of the boron distribution into the implanted zones and therefore an electrical performance modification of the device. In this work we developed a physical model combining the hydrogen exchange during annealing between the dielectric layers and boron out-diffusion between the substrate and silicon oxide. This model was validated firstly by simulating the profiles of boron after annealing for different deposition conditions nitride and oxide, and also by coupling measurements of mechanical stress with hydrogen thermal desorption spectroscopy (TDS). This research revealed two mechanisms of hydrogen regulation in oxide layer during annealing. First, the role of nitride encapsulation, hydrogen diffusion in nitride layer is lower than in oxide so hydrogen cannot degas out during anneal. The second is the role of nitride as a hydrogen source into the stack

Page generated in 0.1179 seconds