Spelling suggestions: "subject:"autostep""
1 |
Deficiences of practical eskom currently uses for setting out-of-step relaysDe Villiers, Louw Nicolaas Francois 26 October 2006 (has links)
Faculty of Engineering and the Built Environment;
School of Electrical and Information Engineering;
MSC Dissertation / In the recent past the Eskom network operated out-of-step at three occasions.
Eskom questions whether the out-of-step relays responded as they should have.
This is based on the fact that not all the out-of-step relays operated during these
events.
This dissertation shows that shunts can make the impedance locus behave nonclassically to the extent that the present practices Eskom uses for out-of-step relaying become inappropriate for application at certain busbars of the network.
This is illustrated by showing that when the characteristic of the relay at Hydra,
situated on the Mpumalanga side of Hydra, is set using the classical approach, the
mentioned relay will not detect swings that have their electrical centre south of
Hydra.
A modified two generator model is used to show the effect shunts have. The phrase “improved two generator model” refers to this model.
The improved two generator model is derived to represent the section of the Eskom network that links Mpumalanga to the Western Cape.
|
2 |
Out-of-step Protection Using Energy Equilibrium Criterion in the Time DomainPaudyal, Sumit 03 July 2008
<p>Disturbances in power systems are common and they result in electromechanical oscillations called power swing. The power swings could be severe and it may lead to loss of synchronism among the interconnected generators. This is referred to as out-of-step condition. The voltage and current swings during an out-of-step condition damage power system equipments and also cause unwanted operations of various protective devices. The protection systems require an effective algorithm for fast and accurate detection of out-of-step condition. </p>
<p>This research is focused on the development of a simple and effective out-of-step relay capable of detecting out-of-step condition in a complex power system. To achieve this, the research has gone through four distinct stages: development of an algorithm, simulation, hardware implementation and its testing. </p>
<p>An out-of-step algorithm is proposed based on equal area criterion in time domain. The equal area criterion in time domain is obtained by modifying the traditional equal area criterion in power angle domain. A single machine infinite bus system, a two machine infinite bus system and a three machine infinite bus system and a 17-bus multiple machines system are used as case studies and are modeled using simulation tool(PSCAD).
</p>
<p>To test the effectiveness of the proposed algorithm, various out-of-step conditions are simulated by applying disturbances at various locations in the above chosen power system configurations. For hardware implementation and testing of the algorithm, a digital signal processing board (ADSP-BF533 from Analog Devices ) is used. To test the performance of the developed digital relay in a closed loop, real time power system signals are necessary and therefore for this purpose, a Real Time Digital Simulator (RTDS) available in the power research laboratory is used. The RTDS simulator mimics the actual power systems in real time. The signals required by the relays can be tapped from the RTDS and the signals coming from relay can be fed back into the RTDS, which makes the closed loop testing of the digital relay possible. This research has yielded a simple out-of-step algorithm and unlike the other out-of-step detection techniques proposed in the literature does not need offline system studies to arrive at a solution.The developed digital out-of-step relay is capable of making decisions based only on the information available from its point of installation, thus it avoids the communication devices which is advantageous for the out-of-step protection of a complex power system. Finally, the simulation results show that the proposed algorithm can be applied to any power configurations and is faster compared to the conventional concentric rectangle schemes used in the literature.</p>
|
3 |
Out-of-step Protection Using Energy Equilibrium Criterion in the Time DomainPaudyal, Sumit 03 July 2008 (has links)
<p>Disturbances in power systems are common and they result in electromechanical oscillations called power swing. The power swings could be severe and it may lead to loss of synchronism among the interconnected generators. This is referred to as out-of-step condition. The voltage and current swings during an out-of-step condition damage power system equipments and also cause unwanted operations of various protective devices. The protection systems require an effective algorithm for fast and accurate detection of out-of-step condition. </p>
<p>This research is focused on the development of a simple and effective out-of-step relay capable of detecting out-of-step condition in a complex power system. To achieve this, the research has gone through four distinct stages: development of an algorithm, simulation, hardware implementation and its testing. </p>
<p>An out-of-step algorithm is proposed based on equal area criterion in time domain. The equal area criterion in time domain is obtained by modifying the traditional equal area criterion in power angle domain. A single machine infinite bus system, a two machine infinite bus system and a three machine infinite bus system and a 17-bus multiple machines system are used as case studies and are modeled using simulation tool(PSCAD).
</p>
<p>To test the effectiveness of the proposed algorithm, various out-of-step conditions are simulated by applying disturbances at various locations in the above chosen power system configurations. For hardware implementation and testing of the algorithm, a digital signal processing board (ADSP-BF533 from Analog Devices ) is used. To test the performance of the developed digital relay in a closed loop, real time power system signals are necessary and therefore for this purpose, a Real Time Digital Simulator (RTDS) available in the power research laboratory is used. The RTDS simulator mimics the actual power systems in real time. The signals required by the relays can be tapped from the RTDS and the signals coming from relay can be fed back into the RTDS, which makes the closed loop testing of the digital relay possible. This research has yielded a simple out-of-step algorithm and unlike the other out-of-step detection techniques proposed in the literature does not need offline system studies to arrive at a solution.The developed digital out-of-step relay is capable of making decisions based only on the information available from its point of installation, thus it avoids the communication devices which is advantageous for the out-of-step protection of a complex power system. Finally, the simulation results show that the proposed algorithm can be applied to any power configurations and is faster compared to the conventional concentric rectangle schemes used in the literature.</p>
|
4 |
Determination Of Weak Transmission Links By Cluster AnalysisErtugrul, Hamza Oguz 01 November 2009 (has links) (PDF)
Due to faults and switching, transmission lines encounter power oscillations referred as power swings. Although in most cases they do not lead to an eventual instability, severe changes in power flows on the lines may cause the operation of impedance relays incorrectly, leading to cascaded tripping of other lines. Out-of-Step tripping function is employed in modern distance relays to distinguish such an unstable swing but setting the parameters and deciding lines to be tripped require detailed dynamic power system modelling and analysis.
The proposed method aims to determine possible out-of-step (OOS) locations on a power system without performing detailed dynamic simulations. Method presented here, is based on grouping of the buses by statistical clustering analysis of the network impedance matrix. Inter-cluster lines are shown to be more vulnerable to give rise to OOS as proven with dynamic simulations on IEEE 39 bus test system.
|
5 |
Development of a new pole-slip protection function for synchronous machines / Lafras LamontLamont, Lafras January 2011 (has links)
The rotor shaft of a synchronous machine can experience severe mechanical stress due to torque
pulsations during a pole-slip condition. All pole-slip protection relays currently on the market use the
impedance pole-slip protection method to detect a pole-slip.
No commercial relay currently available can predict accurately when a generator is about to experience a
damaging pole-slip. All the relays will only trip a generator after it has pole-slipped one or more times.
Severe mechanical damage could be caused to a machine after only one pole-slip. It is therefore essential
to enhance pole-slip protection relays to such an extent that it can trip a generator before it pole slips.
The proposed pole-slip protection function must predict when a generator will become unstable during a
network fault. As soon as instability is predicted, the generator must be tripped before the fault is cleared
to avoid damaging post-fault torque effects. Conventional impedance pole-slip protection methods are
are also discussed and the shortcomings of impedance pole-slip protection are investigated.
The new pole-slip protection function was designed by using PSCAD. Detailed PSCAD simulations on
different network configurations proved that the new pole-slip protection function will trip a generator
before a damaging pole-slip occurs. The new pole-slip protection function was also implemented on an
ABB REM543 multifunctional protection relay and tested on a RTDS. The concept of the new pole-slip
function was successfully demonstrated on the protection relay.
The operation of conventional impedance scheme relays was compared with the proposed pole-slip
function for different fault conditions. Although the new pole-slip protection function is more complex
than the existing impedance functions, it was concluded that similar skills are required to test and
commission the new protection function. The new pole-slip function outperforms the impedance
protection methods, since the new protection function can trip the generator before it pole-slips. / PhD (Electrical Engineering), North-West University, Potchefstroom Campus, 2011
|
6 |
Development of a new pole-slip protection function for synchronous machines / Lafras LamontLamont, Lafras January 2011 (has links)
The rotor shaft of a synchronous machine can experience severe mechanical stress due to torque
pulsations during a pole-slip condition. All pole-slip protection relays currently on the market use the
impedance pole-slip protection method to detect a pole-slip.
No commercial relay currently available can predict accurately when a generator is about to experience a
damaging pole-slip. All the relays will only trip a generator after it has pole-slipped one or more times.
Severe mechanical damage could be caused to a machine after only one pole-slip. It is therefore essential
to enhance pole-slip protection relays to such an extent that it can trip a generator before it pole slips.
The proposed pole-slip protection function must predict when a generator will become unstable during a
network fault. As soon as instability is predicted, the generator must be tripped before the fault is cleared
to avoid damaging post-fault torque effects. Conventional impedance pole-slip protection methods are
are also discussed and the shortcomings of impedance pole-slip protection are investigated.
The new pole-slip protection function was designed by using PSCAD. Detailed PSCAD simulations on
different network configurations proved that the new pole-slip protection function will trip a generator
before a damaging pole-slip occurs. The new pole-slip protection function was also implemented on an
ABB REM543 multifunctional protection relay and tested on a RTDS. The concept of the new pole-slip
function was successfully demonstrated on the protection relay.
The operation of conventional impedance scheme relays was compared with the proposed pole-slip
function for different fault conditions. Although the new pole-slip protection function is more complex
than the existing impedance functions, it was concluded that similar skills are required to test and
commission the new protection function. The new pole-slip function outperforms the impedance
protection methods, since the new protection function can trip the generator before it pole-slips. / PhD (Electrical Engineering), North-West University, Potchefstroom Campus, 2011
|
7 |
Synchronized Measurements And Applications During Power System DynamicsFan, Dawei 20 February 2008 (has links)
Synchronized phasor measurements during dynamics tend to be affected by prevailing system frequency. Some major blackouts in power systems are indeed featured with very large frequency disturbance. Quantitative study done in this dissertation shows that small frequency disturbance may lead to measurement errors, and large frequency disturbance may lead to wrong measurements as well as catastrophic results if applied in system protection and control. The purpose of this dissertation is to bring up this issue, point to some possible solutions and application examples.
A synchronized frequency measurement method, which has better dynamic performance, is proposed in this dissertation. Based on this accurate synchronized frequency, a phasor compensation algorithm is proposed to correct the errors due to frequency disturbance in legacy PMUs or as alternative frequency tracking algorithm in new PMUs. Phasor positioning and unbalance issues are also investigated in this dissertation. With these improved synchronized measurements, wide area protection and control can be achieved with higher reliability. As an application example, traditional preset out-of-step protection could be replaced by the adaptive out-of-step protection using wide area measurements. Real-time swing curve and real-time EEAC based adaptive out-of-step protection schemes are developed respectively in this dissertation. Numerical Simulations are performed for validation of the proposed concepts. / Ph. D.
|
8 |
Multiple Swing Out-of-Step RelayingVelez-Cedeno, Francisco Gerardo 27 December 2010 (has links)
The reduced stability margin, at which power systems are being operated these days, has encouraged the power industry to come up with new ideas to guarantee a continuous and reliable operation of the bulk interconnected system. The development of the synchronized Phasor Measurement technology, and its deployment in several locations in the network, has introduced a promising means to protect power systems from undesired conditions.
This research effort describes a methodology to handle transient stability in power systems using Wide Area Measurements. A correct identification of transiently stable and unstable power oscillations can be achieved with the use of the Out-of-Step protection technique presented in this document. The development of this idea is explained through the analysis of small power system models, and tested in three different operating conditions of the state of California.
The main contribution of this research work, to the Out-of-Step relaying theory, is the identification of multiple unstable swings after a given disturbance. In other words, an Out-of-Step protection scheme that handles a network that behaves as a multi-machine system is presented. / Ph. D.
|
9 |
A New Special Protection Scheme for Power System Controlled SeparationMaram, Sandeep 06 February 2007 (has links)
A new power system controlled separation scheme is proposed to prevent the propagation of cascading failures across a transmission network should it undergoes a major disturbance, thereby reducing the possibility of a large-scale blackout. This scheme is developed based on a set of conjectures, which state the following: (i) the locations of out-of-step operations are independent of the severity and the location of the initial faults; (ii) these out-of-step operations occur sequentially over a sufficiently long duration so that relay blocking and transfer tripping can take place to minimize the load-generation imbalance in the formed islands. To verify these conjectures, extensive dynamic stability simulations are executed on a 30-bus and a 517-bus system, which exhibit characteristics suitable for this study. Furthermore, we verify that these out-of-step operations do depend on the prevailing system topology and the operating conditions. / Master of Science
|
10 |
A fast method for out-of-step protection using state plane trajectories analysis2011 December 1900 (has links)
This thesis proposes a novel out-of-step protection technique using the state-plane representation of the generator speed and power angle. The critical clearing angle is computed using the principle that the total energy of the system at the instant the fault is cleared should be equal to the maximum potential energy of the system. The critical clearing time corresponding to this value of critical clearing angle is obtained directly using the time calibration
of the relative speed versus power angle solution curve. The simultaneous calculation of the critical clearing angle and the time makes the proposed state plane approach much faster than the two-blinder scheme, Equal Area Criterion (EAC) method, rate of change of impedance method, the Swing Center Voltage (SCV) technique, transient energy calculation method, and the frequency deviation calculation from voltage signal method discussed in the literature.
The proposed state plane prediction scheme is used to detect the rst swing out-of-step condition in single machine in nite bus (SMIB) system as well as larger power system con gurations (two-area and IEEE 39-bus test systems) using system wide information. A
coherency analysis is performed in a multi-machine system to find out the two critical groups of generators. The critical generator groups are then represented with a SMIB equivalent
system, and the state plane algorithm is applied to the reduced equivalent. Electromagnetic transient simulations are carried out using PSCAD/EMTDCTM to test the proposed algorithm
in the above discussed test systems. The simulation studies show that the proposed method is computationally e cient, and accurate even for the larger power systems. The technique also does not require any o ine studies.
This thesis also proposes another out-of-step protection technique using generator state deviations to detect multi-swing instability conditions in power system. It uses wide-area
measurements of generator electrical power and speed deviations as inputs to the proposed scheme to detect instability. This technique is not as fast as the state plane approach but can predict multi-swing instability conditions in power system. The state plane method and state deviation method are used together to nd rst swing and multi-swing instability conditions. Two-area power system con guration is used to demonstrate multi-swing instability
prediction. Di erent power swing conditions such as stable, rst swing unstable and multi-swing unstable scenarios are created and the proposed techniques are tested to verify their performance. The proposed techniques are also compared with the conventional two
blinder technique.
A facility for hardware-in-the-loop testing of the relays using a digital simulator is available in the Power System Laboratory at the University of Saskatchewan. An out-of-step relay module is developed in a digital signal processing board (ADSP BF533TM from Analog Devices Inc.) and a closed loop test is performed using the real time digital simulator (RTDSTM). The simulator mimics the power system behaviour in real time, and the analog
time signals from simulator can be communicated to the relay module. The relay can also feed back the signals to the simulator which can be used to operate the circuit breaker elements in the power system. The SMIB and two area systems are used to test the relay in real time. The relay prototypes for both of the proposed techniques are developed in this thesis. The hardware-in-the-loop implementation and testing show that the calculation
times required for the proposed methods are small, and the state plane method especially can predict instability condition much faster than all other methods in current literature.
|
Page generated in 0.0509 seconds