• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

System development and studies on utilization of concentrated solar beam radiation for polymer processing

Stoynov, Lou A. January 2006 (has links)
Various solar energy technologies are being developed to harness the available environmentally friendly and sustainable solar radiation. New ways of utilizing this "free" power for different energy consuming processes continue to be created. In this thesis, a multi-stage solar energy concentrating system has been developed and its feasibility as a radiation source for polymer processing has been explored. The solar energy concentrator (SEC) facility comprises a modified Cassegrainian configuration combined with auxiliary imaging and non-imaging optics, serving as an alternative energy source for polymer joining, ageing and adhesive curing. Modeling and improvement of various aspects of the operation and performance of the SEC facility have been implemented. Optical ray tracing models of the Cassegrainian concentrator with various conventional imaging components and nonimaging concentrators have been created to optimize the optical layout and system efficiency. On their basis, combined 3D ray tracing computer models integrated with the mechanical components have been developed to simulate the entire SEC facility and predict the image size, location and orientation. Additionally, the energy transfer, radiation absorption and heat generation and transfer in the irradiated polymer have been modeled in order to study the radiation-polymer interaction. One novel contribution of this research is the enhancement of the image forming concentrator with non-imaging cone-like concentrators (conical and compound parabolic concentrator (CPC)), utilizing their inherent disadvantage of excessive length. Compared to the refractive type means of transmitting concentrated solar radiation, the truncated cone and CPC concentrators have been found more efficient enhancing further the concentration and widening the utilized spectral range. The experimental studies have demonstrated that transparent and colored, similar and dissimilar polymers can be successfully joined using the SEC facility. The especially developed through-transmission technique removes the need to use a special absorbing medium of the radiant energy required by current advanced welding techniques. The tensile strengths of the joints achieved are comparable to those achieved for similar polymers with other advanced plastic joining methods. The results from the polymer ageing experiments have shown that ultraaccelerated exposure to concentrated sunlight can be performed with the SEC facility without introducing spurious failure mechanisms. Based on the preliminary investigation on adhesive curing utilizing concentrated solar radiation, it has been concluded that with carefully chosen light-curing adhesives solar radiation can be a useful radiation source for adhesive curing.
2

Optical Efficiency of Low-Concentrating Solar Energy Systems with Parabolic Reflectors

Brogren, Maria January 2004 (has links)
<p>Solar electricity is a promising energy technology for the future, and by using reflectors for concentrating solar radiation onto photovoltaic cells, the cost per produced kWh can be significantly reduced. The optical efficiency of a concentrating system determines the fraction of the incident energy that is transferred to the cells and depends on the optical properties of the system components. In this thesis, low-concentrating photovoltaic and photovoltaic-thermal systems with two-dimensional parabolic reflectors were studied and optimised, and a new biaxial model for the incidence angle dependence of the optical efficiency was proposed.</p><p>Concentration of light generally results in high cell temperatures, and the uneven irradiance distribution on cells with parabolic reflectors leads to high local currents and temperatures, which reduce fill-factor and voltage. Cooling the cells by means of water increases the voltage and makes it possible to utilize the thermal energy. The performance of a 4X concentrating photovoltaic-thermal system was evaluated. If operated at 50°C, this system would produce 250 kWh<sub>electrical</sub> and 800 kWh<sub>thermal</sub> per m<sup>2</sup> cell area and year. Optical performance can be increased by 20% by using better reflectors and anti-reflectance glazing.</p><p>Low-concentrating photovoltaic systems for façade-integration were studied and optimised for maximum annual electricity production. The optimisation was based on measured short-circuit currents versus solar altitude. Measurements were performed outdoors and in a solar simulator. It was found that the use of 3X parabolic reflectors increases the annual electricity production by more than 40%. High solar reflectance is crucial to system performance but by using a low-angle scattering reflector, the fill-factor and power are increased due to a more even irradiance on the modules.</p><p>Long-term system performance depends on the durability of the components. The optical properties and degradation of reflector materials were assessed using spectrophotometry, angular resolved scatterometry, Fresnel modelling, optical microscopy, and surface profilometry before and after ageing. The degradation of reflectors was found to be strongly dependent on material composition and environmental conditions. Back surface mirrors, all-metal reflectors, and polymer-metal laminates degraded in different ways, and therefore accelerated ageing must be tailored for testing of different types of reflector materials. However, new types of reflector laminates showed a potential for increasing the cost-effectiveness of low-concentrating solar energy systems.</p>
3

Optical Efficiency of Low-Concentrating Solar Energy Systems with Parabolic Reflectors

Brogren, Maria January 2004 (has links)
Solar electricity is a promising energy technology for the future, and by using reflectors for concentrating solar radiation onto photovoltaic cells, the cost per produced kWh can be significantly reduced. The optical efficiency of a concentrating system determines the fraction of the incident energy that is transferred to the cells and depends on the optical properties of the system components. In this thesis, low-concentrating photovoltaic and photovoltaic-thermal systems with two-dimensional parabolic reflectors were studied and optimised, and a new biaxial model for the incidence angle dependence of the optical efficiency was proposed. Concentration of light generally results in high cell temperatures, and the uneven irradiance distribution on cells with parabolic reflectors leads to high local currents and temperatures, which reduce fill-factor and voltage. Cooling the cells by means of water increases the voltage and makes it possible to utilize the thermal energy. The performance of a 4X concentrating photovoltaic-thermal system was evaluated. If operated at 50°C, this system would produce 250 kWhelectrical and 800 kWhthermal per m2 cell area and year. Optical performance can be increased by 20% by using better reflectors and anti-reflectance glazing. Low-concentrating photovoltaic systems for façade-integration were studied and optimised for maximum annual electricity production. The optimisation was based on measured short-circuit currents versus solar altitude. Measurements were performed outdoors and in a solar simulator. It was found that the use of 3X parabolic reflectors increases the annual electricity production by more than 40%. High solar reflectance is crucial to system performance but by using a low-angle scattering reflector, the fill-factor and power are increased due to a more even irradiance on the modules. Long-term system performance depends on the durability of the components. The optical properties and degradation of reflector materials were assessed using spectrophotometry, angular resolved scatterometry, Fresnel modelling, optical microscopy, and surface profilometry before and after ageing. The degradation of reflectors was found to be strongly dependent on material composition and environmental conditions. Back surface mirrors, all-metal reflectors, and polymer-metal laminates degraded in different ways, and therefore accelerated ageing must be tailored for testing of different types of reflector materials. However, new types of reflector laminates showed a potential for increasing the cost-effectiveness of low-concentrating solar energy systems.

Page generated in 0.0662 seconds