• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 3
  • 2
  • 1
  • Tagged with
  • 46
  • 46
  • 46
  • 26
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Development of control strategies for Francisella noatunensis subsp. orientalis in Nile tilapia, Oreochromis niloticus

Shahin, Khalid Elsayed Kamal Elsayed January 2018 (has links)
Nile tilapia, Oreochromis niloticus, is one of the most important farmed fish globally. One of the most serious bacterial diseases constraining global tilapia production is Francisellosis caused by Francisella noatunensis subsp. orientalis (Fno). Although outbreaks of Fno are increasing worldwide, there are no licenced commercial vaccines to prevent the disease for use on tilapia farms. Thus, the current treatment of choice is the use of antibiotics combined with increasing water temperature up to 30°C. Studies investigating the diversity of circulating Fno isolates and the immune response of tilapia elicited by vaccination against piscine francisellosis are lacking. In addition, the current conventional and molecular tools used for detection of Fno have many drawbacks, making detection of Fno a challenging process. In this study, five clinical isolates of Fno from diverse geographical locations (UK, Costa Rica, Mexico, Japan and Austria), previously characterised by morphology, genotype, antimicrobial susceptibility and virulence, were used in a proteomic study. The whole proteomic cell profile of the five isolates were homogenous by one-dimension sodium dodecyl polyacrylamide gel electrophoresis (1D-SDS-PAGE), while minor differences in the intensity of 15 proteins between the strains were observed by two-dimension SDS-PAGE (2DE), including some important virulence related proteins. The UK isolate was the most significantly different isolate when compared to the other Fno isolates in the current study. The Fno UK isolate had significantly higher abundance of 10/15 of the significantly expressed proteins including four of the essential pathogenicity and virulence related proteins (IglC, GroEL, DnaK, ClpB) compared to the other used Fno isolates. The antigenic profiles of the five Fno isolates were studied by 1D western blotting using tilapia hyper immune sera which recognised an immunodominant band of a molecular weight of ~ 17-28 kDa in all tested Fno isolates. Liquid chromatography-electrospray ionization-tandem mass spectrometry (LC/ESI/MS/MS) identified 47 proteins in this antigenic band. Some of the identified proteins are associated with Fno pathogenicity. 2D western blot analysis of the vaccine isolate (Fno UK) revealed differential antigen recognition between sera from vaccinated and non-vaccinated fish following experimental challenge (26 antigenic spots recognised by sera from vaccinated fish; 31 antigenic spots recognised by sera from vaccinated and challenged fish and 30 antigenic spots recognised by non-vaccinated and challenged fish). The identity of these proteins was determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and some of them are known Francisella virulence related proteins. Bioinformatics analyses revealed diverse categories of proteins with high biological functions, however the vast majority of these proteins are involved in energy production and metabolic pathways of the bacteria. This detailed analysis will facilitate the development of cross-strain protective subunit Fno vaccines and antigen-targeted Fno diagnostics. The outer membrane proteins (OMPs) of the same five Fno isolates were extracted using the ionic detergent sarkosyl. The OMP fraction of the different isolates were separated via 1D-SDS PAGE and the digested peptides of the UK isolate were analysed by LC/ESI/MS/MS. High degree of similarity was observed in the OMP profile of the five Fno isolates with an abundant protein band at 17-28 kDa, which was found to be antigenic by 1D western blot using convalescent tilapia sera. LC/ESI/MS/MS analysis of the OMPs of the Fno UK isolate identified 239 proteins, including 44 proteins in the antigenic band (17-28 kDa). Comparison between the proteins identified in the immunogenic band of whole cell lysate and OMP fraction of the Fno UK isolate showed 30 common proteins between the two preparations, 17 proteins were identified only in the whole cell extract and 14 were identified only in OMP fraction. Outer membrane proteins (e.g. Omp-A), virulence related proteins such (e.g. IglC) and other stress related proteins (e.g. AhpC/TSA family peroxiredoxin) were more abundant in the OMP fraction than the whole cell lysate. In silico analysis enabled prediction of the function and location of the OMPs identified by Mass-spectrometry. The findings of this study provide preliminary data on bacterial surface proteins that exist in direct contact with the host immune defence during infection and offering an insight into their potential role as novel targets for Fno diagnostics and vaccine development. The efficacy of an injectable whole cell oil-adjuvanted vaccine was evaluated against challenge with heterologous Fno isolates in Nile tilapia, Oreochromis niloticus. Three duplicate groups of 130 healthy Nile tilapia (~15 g) were intraperitoneally (i.p.) injected with the vaccine, adjuvant-alone or PBS followed by an i.p. challenge with three Fno isolates from geographically distinct locations. The vaccine provided significant protection to all immunised tilapia groups with a significantly higher relative percent survival (RPS) of 82.3% against homologous challenge, compared to 69.8% and 65.9% after heterologous challenge. Protection correlated with significantly elevated specific antibody responses and western blot analysis demonstrated cross-isolate antigenicity with sera from fish post-vaccination and post-challenge. Moreover, a significantly lower bacterial burden was detected by quantitative real-time polymerase chain reaction (qPCR) in conjunction with significantly greater expression of IgM, IL-1β, TNF-a and MHCII 72 hours post-vaccination (hpv) in spleen samples from vaccinated tilapia compared to those of adjuvant-alone and control fish. The latter results suggested stimulation of protective immune responses following vaccination. In addition, a whole cell formalin killed autogenous immersion vaccine against Fno was developed using the same isolate used for the injectable vaccine. Duplicate tanks of 35 tilapia fry were immersed in the vaccine or in sterile Modified Muller Hinton broth (MMHB) diluted in tank water (1:10 dilution) for 30 s and at 30 days post-vaccination (dpv), all fish groups were immersion challenged with the homologous Fno isolate and monitored for 21 days. A moderate RPS of 43.7% was provided by the vaccine. Serum IgM levels were below the threshold in 30 % of the vaccinated fry 30 dpv. Also, the IgM levels of the vaccinated fry were not significantly different from control fry 21 days-post challenge. A recombinase polymerase amplification (RPA) assay was developed and validated for rapid detection of Fno. The RPA reaction was performed at a constant temperature of 42°C for 20 min. The RPA assay was performed using a quantitative plasmid standard containing a unique Fno gene sequence. Validation of the assay was performed not only by using DNA from Fno, closely related Francisella species and other common bacterial pathogens in fish farms, but also by screening 78 Nile tilapia and 5 water samples collected from UK and Thailand. All results were compared with those obtained by previously established real-time qPCR. The developed RPA showed high specificity in detection of Fno with no cross-detection of either the closely related Francisella spp. or the other species of bacteria tested. The Fno-RPA performance was highly comparable to the published qPCR with detection limits at 15 and 11 DNA molecules detected, respectively. The Fno-RPA was rapid, giving results in approximately 6 min in contrast to the qPCR that required approximately 90 min to reach the same detection limits. Moreover, the RPA was more tolerant to reaction inhibitors than qPCR when tested with field samples. The fast reaction, simplicity, cost-effectiveness, sensitivity and specificity make the RPA an attractive diagnostic tool that will contribute to control the infection through prompt on-site detection of Fno. The overall results of this study indicated that Fno isolates from different origins share a high degree of homology in their proteomic and antigenic profile. Proteomic characterisation data of Fno isolates has contributed to understanding the diversity of Fno isolates and assisted in identifying suitable candidates for developing an effective Fno vaccine. / Moreover, this study has proven the efficacy of a cross protective Fno injection vaccine in tilapia fingerlings, with further optimisation needed for immersion vaccination of fry, and given insights into the immune response of tilapia to vaccination against francisellosis. In addition, it provided a rapid, sensitive, specific and robust molecular tool for detection of Fno that can assist surveillance and control of piscine francisellosis on tilapia farms.
42

Caractérisation fonctionnelle de BamB, protéine impliquée dans la biogénèse de la membrane externe et la virulence de Salmonella / Functional caracterization of BamB, a protein involved in outer-membrane biogenesis and Salmonella virulence

Namdari, Fatémeh 26 March 2013 (has links)
La protéine BamB est une lipoprotéine de membrane externe appartenant au complexe BAM (β-Barrel Assembly Machinery) et impliquée dans l’assemblage des protéines de membrane externe (PME), la sensibilité aux antibiotiques, le contrôle de l’expression des trois systèmes de sécrétion de type III (T3SS) et la virulence de Salmonella. Chez E. coli, au sein du complexe BAM, elle interagit directement avec la protéine BamA. De plus, chez cette bactérie, BamB présente une activité sérine-thréonine kinase. Afin de mieux caractériser le rôle de BamB, nos objectifs ont été d’étudier (1) l’impact de l’altération de l’interaction de BamB avec le complexe BAM ou de sa séquestration dans le cytoplasme sur l’ensemble des rôles décrits de BamB et (2) l’activité kinase putative de BamB chez Salmonella. Nos résultats montrent que certains rôles de BamB sont dissociables entre eux et que l’interaction BamA/BamB n’est pas requise pour le rôle de BamB dans le contrôle de l’expression des T3SS, la virulence de Salmonella et l’assemblage des PME à la membrane externe. Aucune activité kinase ni aucune activité cytoplasmique de la protéine n’a pu être formellement démontrée. / BamB is an outer-membrane lipoprotein belonging to the BAM complex (β-Barrel Assembly Machinery). In Salmonella, it is involved in the assembly of outer membrane proteins (OMP), in antibiotic susceptibility, in the transcriptional control of the three Type-Three-Secretion-Systems (T3SS) related genes and also in virulence. In E. coli, BamB interacts directly with the BamA protein. Moreover, BamB has been shown to have a serine-threonin kinase activity in this bacterium. In order to better characterize the roles of the BamB protein, our purposes were to study (1) the impact of the alteration of the interaction of BamB with the BAM complex or of its cytoplasmic sequestration and (2) its putative kinase activity in Salmonella. Our results show that some of the BamB roles are dissociable and that the BamA/BamB interaction is not required for T3SS expression, Salmonella virulence or OMP assembly in the outer membrane. Currently, neither a kinase activity nor a cytoplasmic activity has been clearly demonstrated for this protein.
43

Caracterização molecular da resistência aos carbapenêmicos em enterobactérias isoladas em hospitais brasileiros / Molecular characterization of carbapenem resistance in enterobacteria isolated in Brazilian hospitals

Mónica Alejandra Pavez Aguilar 27 August 2009 (has links)
Introdução: Após o surgimento e disseminação das β-lactamases (BL) de amplo espectro em membros da família Enterobacteriaceae, os antibióticos carbapenêmicos (imipenem, meropenem, ertapenem) têm sido considerados a terapia de escolha pela estabilidade apresentada contra estas enzimas. Infelizmente, em 2005, o primeiro caso de infecção fatal por um isolado de Klebsiella pneumoniae resistente aos carbapenêmicos foi relatado em nosso país. A partir deste, novos casos de infecção, inclusive por outros gêneros da família Enterobacteriaceae como Enterobacter, Providencia e Escherichia, começaram a surgir. Como mecanismo de resistência aos carbapenêmicos, a expressão de enzimas carbapenemases tem sido mundialmente relatada, enquanto que, a impermeabilidade associada à produção de enzimas do tipo AmpC ou ESBL tem sido esporádica. Com relação à mobilização dos determinantes genéticos de resistência, elementos móveis como integrons e plasmídios têm sido associados. O presente trabalho teve como objetivo caracterizar os mecanismos de resistência aos carbapenêmicos, sua mobilização genética e disseminação clonal em amostras clínicas de enterobactérias isoladas em diversos hospitais brasileiros. Material e métodos: Foram estudadas 28 cepas recuperadas de oito centros hospitalares descritas como resistentes ao imipenem. A caracterização fenotípica foi realizada por: i) determinação da CIM na presença e ausência de inibidores de BL, ii) bioensaio para produção de BL e iii) SDS-PAGE para investigar a ausência de porinas. A confirmação genotípica da resistência mediada por β-lactamases foi realizada por PCR e seqüenciamento e a sua localização plasmidial foi estudada por transformação. Por último, a tipagem molecular foi realizada pela técnica de ERIC-PCR, sendo confirmada pela técnica de PFGE. Resultados: 25 cepas apresentaram resistência para carbapenêmicos (imipenem MIC 8-128 µg/mL), todas com perfil de multiresistência incluindo cefoxitina (CIM90 ≥32 µg/mL). Foram identificados três determinantes de resistência, entre eles, a produção de carbapenemases de tipo MBL (IMP-1) e a enzima KPC-2, recentemente descrita, sendo emergente no país. O mecanismo mais prevalente nas amostras estudadas foi a impermeabilidade de membrana associada à expressão de enzimas do tipo AmpC (CMY-2 plasmidial para E. coli e AmpC cromossômica no caso de Enterobacter aerogenes), as quais mostraram uma contribuição significativa para a resistência aos carbapenêmicos. Dos 28 isolados, 18 apresentaram a perda da porina de 36 kDa, responsável pela entrada de antimicrobianos na bactéria, como os carbapenêmicos. Tanto os genes blaKPC-2 e blaCMY-2 foram transferidos com êxito para E. coli DH10B, confirmando sua localização plasmidial. A co-produção de carbapenemase ou enzimas do tipo AmpC com ESBL do tipo CTX-M foi confirmada em 68% dos isolados. A tipagem molecular mostrou uma disseminação clonal para os isolados carregando determinantes IMP-1 e as enzimas do tipo AmpC cromossômica e plasmidial. Ao contrário, isolados expressando KPC não foram clonalmente relacionadas. Conclusão: A caracterização de resistência apresentada neste trabalho demonstrou uma mudança no perfil de resistência da família Enterobactériaceae devido à sua versatilidade para a aquisição de novos mecanismos de resistência, como sua adaptação aos ambientes hostis. A perda da porina foi o mecanismo mais freqüente nesta família e a co-produção de BL foi um evento associado. Finalmente, os dados obtidos na tipagem molecular denotaram uma disseminação majoritariamente clonal na cidade de São Paulo, com exceção das cepas produtoras de KPC-2, cuja presença tem sido relatada em outras cidades do país, sugerindo a participação de uma transferência horizontal. / Introduction: After emergence, and dissemination of extended spectrum β-lactamases (ESBL) in members of the Enterobacteriaceae family, carbapenem antibiotics (imipenem, meropenem, ertapenem) have been the therapy of choice, since they are stable to ESBL hydrolysis. Unfortunately, in 2005, the first fatal case of infection by carbapenem-resistant Klebsiella pneumoniae was related in our country. From this episode, new infection cases, including by other genders of Enterobacteriaceae such as Enterobacter, Providencia and Escherichia, began to appear. Regarding carbapenem resistance mechanisms, expression of carbapenem hydrolyzing enzymes has been worldwide reported, whereas interplay between impermeability and AmpC or ESBL production has been sporadic. Furthermore, integrons and plasmids have been associated with mobilization of genetic determinants. The aim of this study was to characterize the mechanisms of resistance to carbapenems, their genetic mobilization and clonal dissemination in enterobacterial isolates recovered from clinical samples in Brazilian hospitals. Material and methods: 28 imipenem-resistant isolates recovered from 8 hospital centres were studied. Phenotypic profiles were characterized by: i) MIC of carbapenems in the presence/absence of β-lactamase inhibitors; ii) bioassay for β-lactamase production; iii) SDS-PAGE to investigate absence of outer membrane porins (OMPs). Molecular characterization of β-lactamase-mediated resistance was made by PCR and DNA sequencing and their plasmid localization was evaluated by transformation. Finally, epidemiological typing was performed by ERIC-PCR, being confirmed by PFGE. Results: 25 isolates were confirmed as being resistant to imipenem (MIC 8-128 µg/mL), exhibiting a multidrug-resistant profile, including to cefoxitin (MIC90 ≥32 µg/mL). Two main mechanism of resistance were identified: i) hydrolysis of carbapenem by class B (IMP-1-like MBL) and class A (KPC-2) enzymes, (the latter being recently reported in our country), and ii) outer membrane impermeability associated to AmpC enzyme production (plasmid-mediated CMY-2 for E. coli and chromosomal AmpC for E. aerogenes), which was the most prevalent mechanism found. Eighteen of 28 isolates lacked 36kDa OMP, which is responsible for uptake of carbapenem antibiotics. The blaKPC-2 and blaCMY-2 genes were successful transferred to E. coli DH10B, confirming the plasmid location of both genes. Co-production of carbapenemases or AmpC and CTXM enzymes was confirmed in 68% of isolates, and molecular typing showed clonal dissemination of IMP-1-, plasmid AmpC- and chromosomal AmpC-producing isolates. Otherwise, KPC-2-producing isolates were not clonally related. Conclusion: The characterization of resistance mechanisms to carbapenems, in this study, reveals a change in the resistance patterns among Enterobacteriaceae family members in Brazilian hospitals, due to versatility of isolates to acquire new resistance determinants, which it has favoured the adaptation to hostile environments. Lack of 36 kDa OMP was the most frequent resistance mechanism, being associated to co-production of β-lactamases. Finally, molecular typing denote a clonal dissemination of imipenem-resistant isolates in Sao Paulo city, with exception of KPC-2-producing isolates, which have been described in other Brazilian cities, suggesting a horizontal gene transfer.
44

The importance of OuterMembrane Protein A in SerumResistance in Aggregatibacteractinomycetemcomitans serotype astrain D7SS

Dahlstrand Rudin, Arvid, Burstedt, John January 2017 (has links)
The Gram-negative bacterium Aggregatibacter actinomycetemcomitans is primarily associatedwith aggressive forms of periodontal disease. Additionally, it has occasionally been found to causemetastatic infections in non-oral sites. This requires the ability to evade the bactericidal activity ofthe complement system of the humoral immune system. Outer membrane proteins, namely,Omp100 and OmpA have been connected to normal human serum resistance for several bacteriaspecies. The objective of this study was to investigate if serum-resistant ompA mutants can beobtained, and to detect changes in OMP expression. We used A. actinomycetemcomitansserotype a strain D7SS and D7SS ompA knockouts. The strains were incubated in 50 % NHS.This resulted in a substantial decrease of survival among D7SS ompA knockouts. D7SS ompAknockouts were exposed to 50 % NHS once more to confirm stable serum resistance. 13 out of14 tested clones showed growth, indicating that serum resistant ompA mutants could begenerated. SDS-PAGE gel of extracted outer membrane vesicles revealed an additional proteinband of approximately 34 kDa in at least 4 of 5 tested serum resistant ompA mutants. This proteinband has been analyzed in the laboratory, and according to LC-MS/MS it contains an OmpAhomologue, which has been named OmpA2. We conclude that OmpA2 expression might be amajor mechanism for serum survival in A. actinomycetemcomitans serotype a strain D7SS ompAknockouts.
45

The modulation of polymorphonuclear neutrophil function by cytotoxic necrotizing factor type 1 -- expressing uropathogenic Escherichia coli /

Davis, Jon Michael. January 2005 (has links) (PDF)
Thesis (Ph. D.)--Uniformed Services University of the Health Sciences, 2005. / Typescript (photocopy).
46

Examination of Neisseria gonorrhoeae opacity protein expression during experimental murine genital tract infection /

Simms, Amy Nicole. January 2005 (has links) (PDF)
Thesis (Ph. D.)--Uniformed Services University of the Health Sciences, 2005. / Typescript (photocopy).

Page generated in 0.0936 seconds