• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 10
  • Tagged with
  • 34
  • 20
  • 9
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Étude fonctionnelle du cotransporteur Na+/glucose (hSGLT1) : courant de fuite, vitesse de cotransport et modélisation cinétique

Longpré, Jean-Philippe 05 1900 (has links)
Les résultats présentés dans cette thèse précisent certains aspects de la fonction du cotransporteur Na+/glucose (SGLT1), une protéine transmembranaire qui utilise le gradient électrochimique favorable des ions Na+ afin d’accumuler le glucose à l’intérieur des cellules épithéliales de l’intestin grêle et du rein. Nous avons tout d’abord utilisé l’électrophysiologie à deux microélectrodes sur des ovocytes de xénope afin d’identifier les ions qui constituaient le courant de fuite de SGLT1, un courant mesuré en absence de glucose qui est découplé de la stoechiométrie stricte de 2 Na+/1 glucose caractérisant le cotransport. Nos résultats ont démontré que des cations comme le Li+, le K+ et le Cs+, qui n’interagissent que faiblement avec les sites de liaison de SGLT1 et ne permettent pas les conformations engendrées par la liaison du Na+, pouvaient néanmoins générer un courant de fuite d’amplitude comparable à celui mesuré en présence de Na+. Ceci suggère que le courant de fuite traverse SGLT1 en utilisant une voie de perméation différente de celle définie par les changements de conformation propres au cotransport Na+/glucose, possiblement similaire à celle empruntée par la perméabilité à l’eau passive. Dans un deuxième temps, nous avons cherché à estimer la vitesse des cycles de cotransport de SGLT1 à l’aide de la technique de la trappe ionique, selon laquelle le large bout d’une électrode sélective (~100 μm) est pressé contre la membrane plasmique d’un ovocyte et circonscrit ainsi un petit volume de solution extracellulaire que l’on nomme la trappe. Les variations de concentration ionique se produisant dans la trappe en conséquence de l’activité de SGLT1 nous ont permis de déduire que le cotransport Na+/glucose s’effectuait à un rythme d’environ 13 s-1 lorsque le potentiel membranaire était fixé à -155 mV. Suite à cela, nous nous sommes intéressés au développement d’un modèle cinétique de SGLT1. En se servant de l’algorithme du recuit simulé, nous avons construit un schéma cinétique à 7 états reproduisant de façon précise les courants du cotransporteur en fonction du Na+ et du glucose extracellulaire. Notre modèle prédit qu’en présence d’une concentration saturante de glucose, la réorientation dans la membrane de SGLT1 suivant le relâchement intracellulaire de ses substrats est l’étape qui limite la vitesse de cotransport. / The results presented in this thesis clarify certain functional aspects of the Na+/glucose cotransporter (SGLT1), a membrane protein which uses the downhill electrochemical gradient of Na+ ions to drive the accumulation of glucose in epithelial cells of the small intestine and the kidney. We first used two microelectrodes electrophysiology on Xenopus oocytes to indentify the ionic species mediating the leak current of SGLT1, a current measured in the absence of glucose that is uncoupled from the strict 2 Na+/1 glucose stoichiometry characterising cotransport. Our results showed that cations such as Li+, K+ and Cs+, which interact weakly with SGLT1 binding sites and are unable to generate the conformational changes that are triggered by Na+ binding, were however able to generate leak currents similar in amplitude to the one measured in the presence of Na+. This suggests that the leak current permeating through SGLT1 does so using a pathway that differs from the conformational changes associated with Na+/glucose cotransport. Moreover, it was found that the cationic leak and the passive water permeability could share a common pathway. We then sought to estimate the turnover rate of SGLT1 using the ion-trap technique, where a large tip ion-selective electrode (~100 μm) is pushed against the oocyte plasma membrane, thus enclosing a small volume of extracellular solution referred to as the trap. The variations in ionic concentration occurring in the trap as a consequence of SGLT1 activity made it possible to assess that the turnover rate of Na+/glucose cotransport was 13 s-1 when the membrane potential was clamped to -155 mV. As a last project, we focused our interest on the development of a kinetic model for SGLT1. Taking advantage of the simulated annealing algorithm, we constructed a 7-state kinetic scheme whose predictions accurately reproduced the currents of the cotransporter as a function of extracellular Na+ and glucose. According to our model, the rate limiting step of cotransport under a saturating glucose concentration is the reorientation of the empty carrier that follows the intracellular release of substrates.
32

The role of the kinetochore in chromosome segregation during Meiosis I

Turrin, Evelyne 12 1900 (has links)
La ségrégation des chromosomes est un processus complexe permettant la division égale du matériel génétique entre les cellules filles. Contrairement aux cellules somatiques, ce processus est sujet à des erreurs dans les cellules germinales telles que les ovocytes. Lorsque des erreurs surviennent lors de la ségrégation des chromosomes durant la méiose cela peut conduire à une aneuploïdie. L’aneuploïdie est la présence d’un nombre incorrect de chromosomes dans une cellule et est connue pour causer l’infertilité et des arrêts de grossesses chez l’humain. L’incidence de l’aneuploïdie augmente avec l’âge maternel (1). Le kinétochore est une structure cellulaire impliqué dans la ségrégation des chromosomes. Il est composé de plus de 100 protéines et se situe entre les microtubules et les centromères. Les microtubules se lient aux kinétochores, et ces derniers s’attachent sur les centromères afin de séparer les chromosomes homologues durant la méiose et les chromatides des sœurs pendant la mitose (1–3). Dans les cellules somatiques, cette structure est bien connue (2). Pourtant, moins d’informations sont connues à dans l’ovocyte de mammifère en développement au cours de la méiose I (3,4). Ce projet vise à étudier le rôle du kinétochore durant la ségrégation des chromosomes dans l’ovocyte de souris en développement. Plus spécifiquement, l’assemblage, le désassemblage, la dynamique et la tension des protéines du kinétochore seront évalués. Ce projet permettra de mieux comprendre le rôle du kinétochore durant la méiose I, ses implications durant la séparation des chromosomes, et éventuellement ses implications dans l’aneuploïdie. / Chromosome segregation is an intricate process in dividing genetic material equally between daughter cells. This process, unlike in somatic cells, is error prone in germ cells like the oocyte. When errors occur during meiosis in segregating chromosomes, aneuploidy results when the cell has an incorrect number of chromosomes. This can result in infertility and birth defects in human reproduction. The incidences of aneuploidy are also seen to increase with increasing maternal age (1). The kinetochore is a cellular structure at the heart of chromosome segregation. It is composed of more than 100 proteins and is located between the microtubules and the centromeres. The microtubules attach onto the kinetochores, which themselves attach onto the centromeres, in order to pull the homologous chromosomes apart during meiosis and the sister chromatids during mitosis (1–3). Much is known about this multi-protein structure in somatic cells (2). Yet, very little is known about this in the developing mammalian oocyte during Meiosis I (1,3,4). This project aims to investigate the role of the kinetochore in chromosome segregation in a developing mouse oocyte. More specifically, kinetochore protein assembly, disassembly, dynamics and tension will be assessed. This project will achieve a better understanding of the kinetochore’s role in Meiosis I, its implications in chromosome segregation in a developing mouse oocyte, and how it may be involved in aneuploidy.
33

Binder of SPerm protein interference in sperm-egg interaction

Heidari Vala, Hamed 02 1900 (has links)
No description available.
34

Impact of aneuploidy on cytoplasm of mouse oocytes

Kravarikova, Karolina 12 1900 (has links)
Durant le développement préimplantatoire, les défauts de ségrégation des chromosomes conduisent à l'héritage d'un nombre incorrect de chromosomes, connu sous le nom d'aneuploïdie, qui provoque l'infertilité. L’imagerie à intervalle du développement préimplantatoire est introduite pour sélectionner le meilleur embryon et des efforts sont en cours pour utiliser l'imagerie non invasive pour identifier les ovocytes euploïdes en métaphase-II comme prédicteur de la viabilité future de l'embryon. Il est déjà bien établi que les ovocytes de mammifères en métaphase-II subissent des mouvements cytoplasmiques stéréotypés qui peuvent être visualisés par imagerie non invasive à fond clair à intervalle, appelée « flux cytoplasmique ». Ici, nous avons émis l'hypothèse que le flux cytoplasmique pourrait être affecté par le statut de ploïdie de l'ovule et donc être un outil de sélection utile pour sélectionner les ovules euploïdes de manière non invasive. Nous avons développé des conditions pour générer des ovules euploïdes et aneuploïdes à partir du même bassin d'ovocytes sains. Nous avons ensuite utilisé la microscopie d'imagerie en temps réel DIC, permettant de visualiser et de mesurer le flux cytoplasmique sans manipulation de l'ovule. Les mouvements cytoplasmiques ont été liés au statut de ploïdie pour chaque ovule individuel par immunofluorescence. Nos résultats montrent qu'il n'y a pas de différence de flux cytoplasmique entre les ovules euploïdes et aneuploïdes. Nos données démontrent que l'état de la ploïdie n'a pas d'impact sur les mouvements cytoplasmiques, suggérant que l'utilisation d'une imagerie non invasive pour essayer de distinguer l'état de la ploïdie entre des ovocytes autrement sains sera difficile. / Chromosome segregation errors during early development lead to inheritance of incorrect number of chromosomes, known as aneuploidy, which causes infertility and birth defects. Time-lapse microscopy of preimplantation development is being widely introduced with the aim of selecting the best embryo and efforts to use non-invasive brightfield imaging to identify euploid oocytes at metaphase-II as a predictor of future embryo viability are underway. It is already well established that mammalian metaphase-II oocytes undergo stereotyped cytoplasmic movements that can be visualised by non-invasive brightfield timelapse imaging, termed “cytoplasmic flow”. Here, we hypothesised that this cytoplasmic flow might be affected by ploidy status of the egg and therefore be a useful selection tool to select euploid eggs non-invasively. To address this, we developed conditions to generate euploid and aneuploid eggs from the same pool of otherwise healthy oocytes. We then used DIC live-imaging microscopy, which allowed us to visualise and measure flow without any manipulation to the egg. Importantly, individual eggs were scored for their ploidy status by immunofluorescence, so that cytoplasmic movements could be related to ploidy on an egg-by-egg basis. Our results show that there is no difference in cytoplasmic flow between euploid and aneuploid eggs. Therefore, our data demonstrates that ploidy status does not impact biologically relevant stereotyped cytoplasmic movements, suggesting that using non-invasive imaging to try to distinguish ploidy status between otherwise healthy oocytes will be challenging.

Page generated in 0.0282 seconds