• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 173
  • 27
  • 12
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 247
  • 247
  • 179
  • 26
  • 26
  • 25
  • 23
  • 22
  • 13
  • 13
  • 13
  • 12
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Oxidation and reduction of carbon monoxide and methane carbon-hydrogen bond activation: Molecular orbital theory

Jen, Shu-Fen January 1991 (has links)
No description available.
192

Stratified Arrays of Needle-Type Oxidation Reduction Potential Sensors

Radhakrishnan, Praveen Kumar 22 December 2009 (has links)
No description available.
193

Systematic syntheses of iron-triad (Fe,Ru,Os) tetranuclear clusters by redox condensation reactions of [Ru(3);CO(11)) and [Os(3);CO(11)] trinuclear carbonylates; co-crystallization of ruthenium-osmium clusters /

Siriwardane, Upali January 1985 (has links)
No description available.
194

Formation And Growth Mechanisms of a High Temperature Interfacial Layer Between Al and TiO2

Payyapilly, Jairaj Joseph 23 December 2008 (has links)
The product of interaction between Al and TiO2 at elevated temperature has a wide range of applications in refractory, structural and electronics industries (refractory tiles, tank armor, fuel cells, and microelectronic devices). This research attempts to understand the extent of interaction between Al and TiO2 when the reactant surfaces are in contact at elevated temperature and normal atmospheric pressure. The interfacial region between the reactant compounds is examined using analytical techniques; and the formation of TiAl as the interfacial compound is described. The thermodynamics of the Al – Ti – O system is explained as it relates to the particular conditions for the Al – TiO2 reaction research. Thermodynamic principles have been used to demonstrate that the formation of TiAl is favored instead of other TixAly compounds for the set of conditions outlined in this thesis. A study of the mechanism of interactions in the interfacial region can help towards being able to determine the reaction kinetics that lead to the control of microstructure and thus an improvement in the material performance. An appropriate model that describes the formation of TiAl at the interface is described in this study. The formation of TiAl at the interface is a result of the reduction reaction between TiO2 and Al. The O released during the reduction of TiO2 has been investigated and demonstrated to partly remain dissolved in TiAl at the interfacial region. Some O reacts with Al as well to form crystalline Al2O3 in the interfacial layer. / Ph. D.
195

Relative rates of reaction of pyrite and marcasite with ferric iron at low pH

Wiersma, Cynthia Leigh January 1982 (has links)
The relative reactivities of pulverized samples (100-200 mesh) of 3 marcasite and 7 pyrite specimens from various sources were determined at 25°C and pH = 2.0 in ferric chloride solutions with initial ferric iron concentrations of 10⁻³ molal. The rate of the reaction: FeS₂ + 14Fe³⁺ + 8H₂O = 15Fe²⁺ + 2SO₄²⁻ + 16H⁺ was determined by calculating the rate of reduction of aqueous ferric ion from measured oxidation-reduction potentials. The reaction follows the rate law: -d m<sub>Fe³⁺</sub> / dt = k (A/M) m<sub>Fe³⁺</sub> where m<sub>Fe³⁺</sub> is the molal concentration of uncomplexed ferric iron, k is the rate constant and A/M is the surface area of reacting solid to mass of solution ratio. The measured rate constants, k, range from 1.0x10⁻⁴ to 2.7x10⁻⁴ sec⁻¹ ±5%, with lower-temperature/early diagenetic pyrite having the smallest rate constants, marcasite intermediate, and pyrite of higher-temperature hydrothermal and metamorphic origin having the greatest rate constants. Geologically, these small relative differences between the rate constants are not significant, so the fundamental reactivities of marcasite and pyrite are not appreciably different. The activation energy of the reaction for a hydrothermal pyrite in the temperature interval of 25 to 50°C is 92 kJ mol⁻¹. The BET-measured specific surface area for lower-temperature/ early diagenetic pyrite is an order of magnitude greater than that for pyrite of higher-temperature origin. Consequently, since the lower-temperature types have a much greater A/M ratio, they will appear to be more reactive per unit mass than the higher temperature types. / Master of Science
196

Spatio-temporal control of the cytosolic redox environment in C. elegans

Romero, Catalina 10 October 2015 (has links)
Compartmentalization of redox reactions is essential to all life forms. Protein activity can respond to changes in the local redox environment through the reversible oxidation of cysteine thiols. For the majority of cysteines in the proteome, this interaction takes place through equilibration with the glutathione pool; this raises the question whether this redox pool acts as a buffer, or instead as a sensitive media, transducing information from a local physiological state into protein function.
197

Modelování závislosti biodegradací chlorovaných uhlovodíků na změně teploty a oxidačně-redukčních podmínkách v ATES systému / Modelling dependence of chlorinated hydrocarbons biodegradation on changes of temperature and redox conditions in ATES sytems

Havlíková, Barbora January 2013 (has links)
The Aquifer Thermal energy Storage (ATES) system is one of the most important techniques, that use the aquifer as an energy storage for heating and cooling the buildings. The operation of the ATES system is based on pumping the cold ground water into the buildings during the summer and then injecting the warmer water back into the aquifer. During the winter, the direction is reversed. Warm water is pumped to the buildings, where it serves for the heating system and then it is injected back into the aquifer. The ATES system has a main effect on the chemical composition of ground water, because of changes in the temperature of ground water, mixing of water from different redox zone and increasing of ground water flow in the neighbourhood of the wells of the ATES system. The modification in chemical composition and temperature could influence the behaviour of contaminants. If we want to install the ATES system into a contaminated aquifer, we have to know, if the ATES system would influence the behaviour of the contaminant plume positively or negatively. This study was made to increase the understanding of the dependence between changes of temperature and oxidation-reduction conditions in the ATES system and biodegradation of chlorinated hydrocarbons. In the first part, several scenarios were modelled...
198

Role of methionine sulfoxide reductase in thermal-induced spreading depression coma in Drosophila melanogaster

Unknown Date (has links)
Drosophila melanogaster encounter periods of increased temperature or decreased oxygen in its native environment. One consequence of these environmental stresses is increased production of reactive oxygen species that damage major molecules within cells. Another consequence is that flies fall into a protective coma where biological functions are minimized to conserve energy expenditures. This biological phenomenon is called spreading depression. The overarching aim of this project is to determine if methionine sulfoxide reductases affect entrance or exit from the protective coma induced by acute thermal stress. The data revealed that complete deficiency of Msr in young flies causes a faster induction of the coma. In both young and old flies, Msr does not affect average recovery time but does affect the pattern of recovery from coma. Entrance into the coma is age dependent with young flies maintaining activity longer than before entering into the coma as compared to old flies. / by Karin Schey. / Thesis (M.S.)--Florida Atlantic University, 2012. / Includes bibliography. / Mode of access: World Wide Web. / System requirements: Adobe Reader.
199

Mechanism of neuroprotection in stroke-related models

Unknown Date (has links)
Stroke is the third leading cause of mortality in the United States, and so far, no clinical interventions have been proved truly effective in stroke treatment. Stroke my result in hypoxia, glutamate release and oxidative stress, etc. The purpose of this dissertation study is to evaluate the neuroprotective effects of four drugs (taurine, G-CSF sulindac and DETC-MeSO) on PC12 cell line or primary cortical neuronal cell culture, and to understand the protective mechanisms underlying in three stroke-related models : hypoxia, excessive glutamtate and oxidative stress. In the first part of this dissertation, we studied the neuroprotection of taurine against oxidative stress induced by H2O2 in PC12 cells. Our results show that extracellular taurine exerts a neuroprotective function by restoring the expression of Bcl-2 and downregulation of the three Endoplasmic Reticulum (ER) stress markers : GRP78, Bim and CHOP/GADD153, suggesting that ER stress can be provoked by oxidative stress and can be suppressed by taurine. In the second part, glutamate excitotoxicity-induced ER stress was studied with dose and time as variables in primary cortical neurons. The results demonstrate that glutamate excitotoxicity leads to the activation of three ER stress pathways (PERK, ATF6 and IRE1) by initiating PERK first, ATF6 second and IRE1 pathway last. The third part of this dissertation studied the robust and beneficial protection of taurine in cortical neurons under hypoxia/reoxygenation or glutamate toxicity condition. We found that taurine suppresses the up-regulation of GRP778, Bim, caspase-12 and GADD153/CHOP induced by excessive glutamate or hypoxia/reoxygenation, suggesting that taurine may exert a protective function against hypoxia/regeneration by reducing the ER stress. / Moreover, taurine can down-regulate the ratio of cleaved ATF6 and full length ATF6, and p-IRE1 expresssion, indicating that taurine inhibits the ER stress induced by hypoxia/reoxygenation or glutamate through suppressing ATF6 and IRE1 pathways. In the fourth part, the synergistic benefits of the combination of taurine and G-CSF, and the neuroprotective effects of G-CSF, sulindac or DETC-MeSO are studied in cortical neurons. Our results show that G-CSF, sulindac or DETC-MeSO can highly increase the neuron visibility by inhibiting ER stress induced by hypoxia/reoxygenation or glutamate toxicity. Furthermore, we proved that G-CSF or sulindac can significantly inhibit the activation of ATF6 or IRE1 pathway stimulated by hypoxia/reoxygenation, and DETC-MeSO can suppress the activation of both PERK and IRE1 pathways in primary neuron cultures. These findings provide promising and rational strategies for stroke therapy. / by Chunliu Pan. / Thesis (Ph.D.)--Florida Atlantic University, 2012. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2012. Mode of access: World Wide Web.
200

Studies on the mechanism by which sulindac sensitizes cancer cells to oxidative stress

Unknown Date (has links)
by Alexander Kreymerman. / Thesis (M.S.)--Florida Atlantic University, 2011. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2011. Mode of access: World Wide Web. / Sulindac is a known NSAID that has also been shown to have anti-cancer activity that is not related to its ability to inhibit COX 1 and 2. During the past 15 years there have been a large number of studies attempting to elucidate its mechanism of action. Our laboratory has shown that sulindac can both protect normal cells and enhance the killing of cancer cells under oxidative stress from H2O2 and TBHP. However, except for mitochondrial dysfunction and ROS production, the mechanism by which sulindac sensitized the cancer cells to oxidative stress remains unknown. Results of this research project suggest that the effect of sulindac and oxidative stress not only involves mitochondrial ROS production, but also aspects of the preconditioning response. In normal cells this leads to survival by a preconditioning pathway, likely involving PKCε. . However, cancer cells react by initiating a pathway leading to apoptosis involving PKCδ.

Page generated in 0.0794 seconds