Spelling suggestions: "subject:"exidative phosphorylation"" "subject:"boxidative phosphorylation""
11 |
How does mitochondrial heteroplasmy affect cell proliferation?Sutton, Selina Kaye January 2006 (has links)
Mitochondrial mutations and heteroplasmy have been associated with disease states that result from inadequate cellular energy production. As mitochondrial DNA (mtDNA) encodes many of the polypeptides involved in oxidative phosphorylation (OXPHOS), mtDNA mutations may lower energy production which is required for cell division and sustained ATP synthesis. In order to test the relationship between mtDNA mutations and the rate of cell division, a mammary epithelial cancer cell line, MCF-7, is used as a model. Nine proliferate single cell clones have been isolated from MCF-7. Population doubling times of six single cell clones and the MCF-7 stock have been determined. Clones with distinctly different growth rates were selected for mutational analysis. Growth rates of these clones appeared to be different from each other. Using polymerase chain reaction (PCR) and DNA sequencing, three cases of heteroplasmy have been identified in the mitochondrial genes of the MCF-7 stock and four single cell clones (ATPase C9119T, ND6 T14300G, Cytb G15807A). Heteroplasmy present in the Cytb gene is differs between single cell clones. Differences between the growth rates may be indicative of metabolic variations in these single cell clones. The OXPHOS enzymes encoded by the mutated genes were quantified by standard enzymatic assays. The assays demonstrated significant differences in specific activity between the clones, but were not correlated with mitochondrial heteroplasmy. This thesis determines that the differences in specific activity observed between clones is of nuclear origin.
|
12 |
Development of models and methods to assess the efficacy of anti-cancer drugs targeted to the mitochondriaPotter, Michelle January 2014 (has links)
<strong>Background:</strong> Malignant transformation of cells is typically characterised by aerobic glycolysis, resulting in supressed mitochondrial function, a state that helps resistance to apoptosis. This characteristic has been widely accepted as a hallmark of cancer and has been shown to be of critical importance in tumour development. The bioenergetic differences between normal and malignant cells are being exploited to identify potential cancer specific therapeutics. Improved in-vitro models are required to aid the identification and assessment of candidate drugs. In this project, we investigated the bioenergetic phenotypes of a panel of adult and paediatric cancer cell lines and evaluated the potential of 3D models as a platform for testing drugs that target cancer metabolism. We also investigated a novel method to assess mitochondrial function that enables the quantification of the level of oxygenation within the cell. <strong>Results:</strong> The results presented in this thesis show that not all cancers display this aerobic glycolytic phenotype. We found that while some cell lines displayed the Warburg phenotype others displayed high levels of oxidative metabolism. These bioenergetic profiles need to be considered when deciding which anti-cancer drugs to use in a chemotherapeutic regime. If a bioenergetic pattern can be identified it may one day form the basis of a screening strategy for tumours. Dichloroacetate (DCA) is a small molecule PDK inhibitor that was investigated in this study. It was found to be relatively non-toxic to cells cultured in 2D but had improved toxicity when the cells were cultured in a 3D environment. Lastly, we evaluated a new oxygen sensing nanoprobe, Mito-Xpress Intra, and the results demonstrate its potential as a non-invasive means of measuring oxygen concentrations within the cell in real time as well as highlighting some striking differences between applied ambient and measured intracellular oxygen concentrations. <strong>Conclusion:</strong> The findings suggest that not all cancers display the characteristic glycolytic phenotype. They also highlight the importance of controlling oxygen and glucose levels when evaluating metabolism and when drug testing.
|
13 |
Mitochondrial biogenesis and electrical properties of hPSC-derived motor neuronsO'Brien, Laura 01 January 2015 (has links)
Human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) hold great promise in the fields of drug development and regenerative medicine. If iPSCs reprogrammed from patient cells replicate what is seen in vivo they may be used as a model of disease. A process that is disrupted in many neurodegenerative diseases is mitochondrial biogenesis. One of these diseases is amyotrophic lateral sclerosis (ALS), which is characterized by loss of motor neurons in the brain and spinal cord. Differentiation of hPSCs into motor neurons offers a way to study a previous unavailable cell type and may further our understanding of human motor neuron biology. The aims of the present study were to differentiate motor neurons from hESCs and iPSCs in low oxygen conditions and to explore mitochondrial biogenesis and electrical maturation during this process. After three weeks of treatment with retinoic acid and purmorphamine, a sonic hedgehog agonist, cells increased expression of post mitotic spinal motor neuron markers. One week later electrophysiological analysis revealed voltage-gated currents and action potential generation. Mitochondrial biogenesis signaling and expression of respiratory chain proteins increased with motor neuron differentiation. Respiration analysis revealed a decrease in glycolysis in motor neurons compared to neural stem cells. Interestingly, this was not accompanied by an increase in basal respiration or mitochondrial mass. These findings enhance our understanding of motor neuron mitochondrial biogenesis, a process impaired in ALS.
|
14 |
Exprese vybraných defektů oxidativní fosforylace na úrovni kultivovaných fibroblastů. / Expression of selected defects of oxidative phosphorylation system in cultivated fibroblastsMarková, Michaela January 2015 (has links)
AAbbssttrraacctt:: The mammalian organism is entirely dependent on ATP production by oxidative phosphorylation system (OXPHOS) on the inner mitochondrial membrane. OXPHOS is composed of respiratory chain complexes I-IV, ATP synthase and also include two electron transporters cytochrome c and coenzyme Q. Disorders of mitochondrial energy metabolism caused by OXPHOS defects are characterized by extreme heterogeneity of clinical symptoms, variability of tissues affected and the severity of the defect at the level of individual tissues. The mitochondrial disorders are not always clearly expressed at the level of available tissue or most easily available cultured fibroblasts and/or currently available methods are not capable to detect the defects on the fibroblasts level. The aim of this master thesis was to identify by biochemical methods, especially by high sensitive polarography, OXPHOS disorders in cultured fibroblasts. Cell lines from 10 patients with isolated (SURF21, SCO1 ND1, ND5) or combined defects of OXPHOS complexes whose biochemical defect was confirmed in muscle tissue as well as 14 patients with non- mitochondrial diseases (8 patients with Huntington disease, 6 patients with disorder of sulphur amino acids metabolism) were analysed. Furthermore impact of various cultivation conditions on OXPHOS...
|
15 |
Studium metabolismu leukemických buněk ve vztahu k citlivosti na terapii / Study of leukemic cells' metabolism in association with response to the therapyŠimčíková, Markéta January 2015 (has links)
Acute lymphoblastic leukemia (ALL) is the most common malignant dise- ase in children. Despite great advancements in treatment of this disease, around 15-20 % of patients suffer a relapse. One of the possible reasons for relapse is developed resistance to cytostatic drugs. L-asparaginase is an im- portant chemotherapy component for childhood ALL and resistance to this drug often complicates treatment. To date, causes of developing resistance have not been sufficiently described. This thesis is a part of a greater research project focusing on mechanisms of L-asparaginase's activity and reasons for developing resistance to this chemotherapeutic agent. Differential metabolic requirements of cancerous cells have been described as early as 1924 by O. H. Warburg and they have been subject to scientific inquiry since. This study aimed to describe the relationship between basal metabolic determinants of leukemia cells and their sensitivity to L-asparaginase. For this reason, two metabolic pathways, glycolysis and oxidative phosphorylati- on, were studied in detail using a Seahorse Bioanalyzer. Further, expression of specific genes involved in glycolysis was detected. Content of mitochon- drial reticulum in cells, expression of the asparagine synthetase gene, and cell size were also studied. Experiments were...
|
16 |
Papel da mitocôndria na homeostase oxidativa e na funcionalidade de espermatozoides ovinos submetidos à criopreservação / Role of mitochondria in oxidative homeostasis and functionality of ram sperm submitted to cryopreservationLosano, João Diego de Agostini 05 December 2016 (has links)
Estudos têm demonstrado a importância da mitocôndria para a funcionalidade do espermatozoide, referindo-a como a principal fonte de energia para a motilidade e a homeostase celular. No entanto, para algumas espécies animais, estudos recentes indicam que a glicólise parece ser o principal mecanismo de produção de ATP para a motilidade espermática, superior à fosforilação oxidativa. Em ovinos estudos envolvendo o metabolismo energético do espermatozoide são necessários não apenas pelo seu interesse zootécnico, mas também como modelo experimental para bovino, espécie na qual este mecanismo é também pouco conhecido. Apesar da importância da mitocôndria para o metabolismo celular durante a fosforilação oxidativa, são produzidos metabólitos denominados Espécies Reativas de Oxigênio, as quais possuem um papel fundamental em diversos processos fisiológicos. No entanto, um eventual desequilíbrio entre a produção de EROs e os mecanismos antioxidantes caracteriza o estresse oxidativo, que pode ser letal para as células espermáticas. Ademais, estudos anteriores relacionam as disfunções mitocondriais causadas pela criopreservação espermática ao estresse oxidativo e a diminuição da atividade mitocondrial. Desta forma, acreditamos que injúrias mitocondriais durante a criopreservação são a origem da produção excessiva de fatores pró-oxidativos e, em última análise, causadores dos danos espermáticos pós-descongelação e diminuição da motilidade. Em face do exposto, a hipótese central do presente experimento é que o espermatozoide ovino, após despolarização mitocondrial por desacoplamento da fosforilazação oxidativa e suplementação para a glicólise, é capaz de manter a produção de ATP e, consequentemente, a motilidade espermática. Ainda, um leve desacoplamento mitocondrial é benéfico para os espermatozoides durante a criopreservação por diminuir as crioinjúrias mediadas por disrupções mitocondriais. Em relação aos nossos estudos de fisiologia, observamos no experimento 1 que os espermatozoides ovinos, mesmo apresentando suas mitocôndrias despolarizadas são capazes de manter a motilidade total. Este resultado nos sugere que a via glicolítica possivelmente é capaz de manter a motilidade espermática. Por outro lado, o desacolpamento mitocondrial alterou os padrões do movimento espermático, nos sugerindo que a mitocôndria possui um papel mais importante na qualidade do movimento espermático do que na motilidade total. Ainda, no experimento 2 observamos que a via glicolítica, após ser estimulada, é capaz de manter os níveis de ATP, os padrões de cinética espermática e a homeostase oxidativa dos espermatozoides epididimários bovinos submetidos ao desacoplamento mitocondrial. Em relação ao nosso estudo aplicado (experimento 3), observamos que os espermatozoides ovinos criopreservados submetidos à um leve desacoplamento mitocondrial concomitantemente à estimulação da via glicolítica apresentaram maior motilidade, menor peroxidação lipídica, menor susceptibilidade da cromatina à denaturação ácida e maior potencial de membrana mitocondrial. Estes resultados nos indicam que um leve desacoplamento mitocondrial durante a criopreservação espermática é capaz de proteger as mitocôndrias contra as crioinjúrias e consequentemente melhorar a qualidade espermática pós-descongelação. / Studies have demonstrated the importance of mitochondria in the sperm functionality, referring to it as the main source of energy for motility and cellular homeostasis. However, for some animal species, recent studies indicate that glycolysis seems to be the main mechanism ATP production for sperm motility, higher than the oxidative phosphorylation. In ovine studies involving energy metabolism of sperm are required not only for their livestock interest, but also as an experimental model for bovine species in which this mechanism is also unknown. Despite the importance of mitochondria for cellular metabolism during oxidative phosphorylation, they are produced metabolites called reactive oxygen species, which have a key role in many physiological processes. However, any imbalance between ROS and antioxidant mechanisms characterizes oxidative stress, which may be lethal for the sperm cells. Moreover, previous studies relate to mitochondrial dysfunction caused by oxidative stress on sperm cryopreservation and decreased mitochondrial activity. Thus, we believe that mitochondrial injury during cryopreservation are the source of excessive production of pro-oxidative factors and ultimately, causing the post-thaw sperm damage and decrease in motility. In view of the above, the central hypothesis of this experiment is that the ovine sperm after mitochondrial depolarization by uncoupling of oxidative phosphorylation and glycolysis supplementation is capable of maintaining the ATP production and consequently sperm motility. Additionally, a mild mitochondrial uncoupling is beneficial for spermatozoa during cryopreservation by decreasing the cryoinjuries mediated by mitochondrial disruption. Regarding our physiology studies, we observed in experiment 1 that the ovine sperm, even with their depolarized mitochondria are able to maintain total motility. This result suggests that the glycolytic pathway is possibly able to maintain motility. Moreover, the fact that mitochondrial uncoupling altered sperm movement patterns suggests that mitochondria has a more important role in the quality of sperm kinetic than the total motility. Furthermore, in the experiment 2 we observed that glycolytic pathway, after being stimulated, is able to maintain ATP levels, sperm kinetics patterns and oxidative homeostasis of bovine epididymal spermatozoa submitted to mitochondrial uncoupling. Regarding our applied study (Experiment 3), we observed that cryopreserved ovine sperm submitted to mild mitochondrial uncoupling concurrently with glycolysis stimulation showed increased motility, lower lipid peroxidation, lower susceptibility of chromatin to acid denaturation and higher mitochondrial membrane potential. These results indicate that a slight mitochondrial uncoupling during sperm cryopreservation can protect mitochondria against cryoinjuries and hence improve the post-thaw spermatozoa quality.
|
17 |
Mitochondrial Involvement in the Accumulation of Misfolded Proteins in Neurodegenerative DiseasesFukui, Hirokazu 26 March 2008 (has links)
Mitochondrial respiratory chain deficiency and increased oxidative stress have been closely associated with major age-associated neurodegenerative diseases. I hypothesized that mitochondrial oxidative phosphorylation defects or elevated oxidative stress, which could arise in a stochastic manner during our normal aging process, might modulate the formation of protein aggregates or production of misfolded proteins, contributing to the initiation of these diseases. To test this hypothesis, we (i) have developed and characterized mouse and cellular models of Alzheimer's and Huntington's diseases expressing aggregate-prone pathogenic proteins, beta-amyloid and mutant huntingtin (Chapters 1 and 2), (ii) have developed mouse models that exhibit neuron-specific defects in mitochondrial oxidative phosphorylation (Chapters 2 and 3), and (iii) have evaluated the alterations in the amount of aggregate loads upon genetic and pharmacological manipulations of mitochondrial oxidative phosphorylation activities (Chapters 1 and 2). The evaluation of the impacts of mitochondrial defects on the amount of huntingtin aggregates has revealed that a defect in complex III promotes the accumulation of huntingtin aggregates via the impairment of proteasome activity (Chapter 1). On the other hand, ablation of complex IV activity in a subset of postmitotic neurons revealed that complex IV deficiency does not promote either oxidative stress or the deposition of amyloid plaques in a mouse model of Alzheimer's disease, questioning the mitochondrial origin of Alzheimer's disease (Chapter 2). However, as shown previously, the tight correlation between oxidative stress and accumulation of amyloid plaques was found. Chapter 3 involved the generation of an improved mouse model, in which mitochondrial defects can be induced in a subset of forebrain neurons (cortex, hippocampus, and striatum) in a doxycycline-dependent manner. This system relies on the regulated expression of a mitochondria-targeted restriction enzyme, PstI, which digests mitochondrial DNA and thereby impairs the activity of oxidative phosphorylation. In conclusion, our studies highlighted the disease-specific complex pathways that may modulate the accumulation of misfolded proteins during aging. Future studies employing the newly-developed mouse model may reveal a contribution of age-associated global defects of oxidative phosphorylation to oxidative stress and neurodegenerative diseases.
|
18 |
Relationships among Processing Speed, Attention, and Biochemical Features in Children Identified with Mitochondrial DiseaseChang, Jihye S 26 April 2011 (has links)
Mitochondrial Diseases (MD) are disorders of function in cellular oxidative phosphorylation caused by diverse nuclear DNA and mtDNA mutations and seen in 1/5,000 births. The purpose of this study was to examine relationships across medical indices, biochemical measures, and neurobehavioral functioning in children with MD. Findings from Western Blot, Native Gels, High Resolution Respirometry, and the Nijmegen diagnostic criteria were assessed in relation to children’s processing speed and attention, based on the prediction that impaired functioning of proteins, complexes, and cellular respiration, that are critical in ATP production, will impact neurodevelopment and related neuropsychological processes in children with MD. Twenty-five children (ages 4-13) were administered subtests from the DAS-II and NEPSY-II. Results from multiple regression analyses suggest that processing speed and attention deficits may be markers of abnormal protein expression that interferes with the production of ATP in the oxidative phosphorylation process; implications for future research are presented.
|
19 |
Investigation of the effect of hyperthermic treatment on mitochondrial oxidative phosphorylation system / Hipertermijos poveikio mitochondrijų oksidacinio fosforilinimo sistemai tyrimasŽūkienė, Rasa 20 November 2008 (has links)
The elucidation of the molecular mechanism of the cell response to moderate heating is of importance for understanding the events that occur in the cell upon use of heating for therapeutic purpose or during illnesses that are associated with fever. The aim of this work was to investigate and to compare the effects of mild (fever) and severe hyperthermia on functional properties of oxidative phosphorylation system in normal tissue mitochondria. Modular kinetic analysis for the first time was applied to evaluate effects of hyperthermia on oxidative phosphorylation in rat heart and liver mitochondria. We demonstrated that changes in mitochondrial functions induced by mild hyperthermia (42 ºC) are reversible but more severe hyperthermia (45 ºC) causes partially irreversible uncoupling and inhibition of mitochondrial respiration in state 3, hyperthermia remarkably (3.6-2.1 fold) activates ROS generation in heart mitochondria and that maximal increase in rate of H2O2 production and lipid peroxidation is observed in the fever temperature range. We show that the response of liver mitochondria and hepatocytes to hyperthermia is to certain extent dependent on gender and temperature. Specific differences of male rat liver and heart mitochondrial components phase transitions have been revealed by DSC analysis. / Ląstelių atsako į nuosaikią hipertermiją molekulinio mechanizmo išaiškinimas yra labai svarbus norint suprasti procesus, kurie vyksta ląstelėse jas kaitinant gydymo tikslais ar organizmui karščiuojant. Šio darbo tikslas buvo nustatyti ir palyginti švelnios (karščiavimo) ir šiurkščios hipertermijos poveikį oksidacinės fosforilinimo sistemos funkcijoms normalių audinių mitochondrijose. Pirmą kartą panaudojome modulių kinetinę analizę hipertermijos poveikiui širdies ir kepenų mitochondrijų oksidacinio fosforilinimo sistemai tirti. Mes nustatėme, kad švelnios hipertermijos (42 ºC) poveikis širdies mitochondrijų funkcijoms yra grįžtamas, bet šiurkštesnė hipertermija (45 ºC) sukelia dalinai negrįžtamą kvėpavimo ir fosforilinimo atskyrimą bei mitochondrijų kvėpavimo greičio trečioje metabolinėje būsenoje slopinimą. Hipertermija didino ROS gamybos greitį ir lipidų peroksidaciją, kurie buvo didžiausi karščiavimo temperatūroje. Nustatėme, kad kepenų mitochondrijų ir hepatocitų atsakas į hipertermiją priklauso nuo žiurkės lyties ir temperatūros. Atlikome palyginamąjį širdies ir kepenų mitochondrijų sandų fazinių virsmų analizę diferencine skenuojamaja kalorimetrija ir nustatėme būdingus skirtumus.
|
20 |
Riebalų rūgščių vaidmuo reguliuojant mitochondrijų kvėpavimą / The role of fatty acids in regulation of mitochondrial respirationKuršvietienė, Lolita 31 May 2007 (has links)
Šiame darbe siekta išsiaiškinti riebalų rūgščių vaidmenį reguliuojant oksidacinį fosforilinimą saponinu permeabilizuotose žiurkės širdies raumens skaidulose. Pagrindiniai darbo uždaviniai: 1).Įvertinti įvairios struktūros riebalų rūgščių vaidmenį reguliuojant oksidacinį fosforilinimą saponinu permeabilizuotose žiurkės širdies raumens skaidulose;2) Naudojant egzogeninę ADP-suvartojančią piruvato kinazės ir fosfoenolpiruvato sistemą įvertinti, ar oksiduojantis riebalų rūgštims kinta išorinės mitochondrijų membranos laidumas ADP-ui; 3) Tirti, ar riebalų rūgščių oksidacija veikia funkcinę sąveiką tarp kreatino kinazės ir ADP/ATP nešiklio; 4).Nustatyti riebalų rūgščių oksidacijos poveikį mitochondrijų in situ morfologijai bei įvertinti dekstrano T70 poveikį mitochondrijų in situ kvėpavimo parametrams ir morfologijai.
Mitochondrijose in situ oksiduojantis įvairios struktūros riebalų rūgštims, vienoms ar mišinyje su piruvatu+malatu, oksidacinio fosforilinimo tariamoji KmADP sumažėja panašiu laipsniu lyginant su piruvato+malato oksidacija. Šis poveikis yra grįžtamas, t.y. riebalų rūgščių oksidacija nedaro įtakos po jos vykstančiai neriebalinės kilmės substratų oksidacijai. Oksiduojantis riebalų rūgštims išsaugoma funkcinė sąveika tarp kreatino kinazės ir ANT, nepaisant ženklaus tar. KmADP reikšmės sumažėjimo. Elektroninės mikroskopijos metodu įvertinome, kad riebalų rūgščių sąlygotas KmADP sumažėjimas gali būti susijęs su mitochondrijų struktūros pokyčiais, kuriuos sukelia riebalų... [to full text] / The aim of this study was to investigate the influence of fatty acid oxidation on the regulation of oxidative phosphorylation in permeabilized rat cardiac fibers. The objectives of the study:1). To evaluate the influence of different fatty acids in the regulation of oxidative phosphorylation in fibers; 2). To evaluate the changes in outer mitochondrial membrane permeability for ADP during fatty acid oxidation by the means of exogenous ADP consuming system consisting of pyruvate kinase and phosphoenolpyruvate;3); To investigate the effect of fatty acid oxidation on the functional coupling between mitochondrial creatine kinase and adenine nucleotide translocase; 4). To investigate the effects of fatty acid oxidation and dextran T70 on the morphology and respiration of mitochondria in saponin-permeabilized rat cardiac fibers.
The apparent Km of oxidative phosphorylation for ADP in saponin-permeabilized rat cardiac fibers is decreased several fold during oxidation of fatty acids alone or in the mixture with pyruvate compared to oxidation of pyruvate+malate. This effect is reversible, and fatty acid oxidation does not influence the subsequent oxidation of non-fatty substrates. The functional coupling between creatine kinase and adenine nucleotide translocase is not influenced by fatty acid oxidation and the efficiency of creatine kinase system does not depend on the nature of respiratory substrates.
Analysis of electron microscopy images of fibres indicates that morphological... [to full text]
|
Page generated in 0.1066 seconds