• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 17
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 111
  • 34
  • 32
  • 15
  • 13
  • 11
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

The simultaneous measurement of nucleotide-stimulated cytosolic calcium signaling and anion secretion in cultured equine sweat gland epithelium.

January 2000 (has links)
Wong Hau Yan Connie. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2000. / Includes bibliographical references (leaves 86-95). / Abstracts in English and Chinese. / Abstract --- p.ii / Acknowledgements --- p.ix / Contents --- p.x / List of Figures --- p.xiii / List of Tables --- p.xv / Abbreviations --- p.xvi / Chapter Chapter 1: --- Introduction / Chapter 1.1 --- Role of extracellular nucleotides in equine sweat gland epithelial cells --- p.1 / Chapter 1.2 --- Subdivision of P1 and P2 purinoceptor --- p.4 / Chapter 1.3 --- General properties of P2 purinoceptor --- p.5 / Chapter 1.3.1 --- P2X purinoceptor family --- p.5 / Chapter 1.3.2 --- P2Y purinoceptor family --- p.8 / Chapter 1.4 --- The diversity of P2Y purinoceptor --- p.10 / Chapter 1.4.1 --- P2Y1 receptor --- p.10 / Chapter 1.4.2 --- P2Y2 receptor --- p.10 / Chapter 1.4.3 --- P2Y4 receptor --- p.10 / Chapter 1.4.4 --- P2Y6 receptor --- p.10 / Chapter 1.4.5 --- P2Y11 receptor --- p.11 / Chapter 1.5 --- The importance of calcium --- p.13 / Chapter 1.6 --- General aspects of calcium signaling --- p.14 / Chapter 1.7 --- Calcium release from the intracellular calcium stores --- p.15 / Chapter 1.7.1 --- Metabolism of inositol phosphates --- p.15 / Chapter 1.7.2 --- Ca2+ release from the internal calcium store --- p.15 / Chapter 1.8 --- Store-operated calcium channels (SOCC) or Capacitative calcium entry (CCE) --- p.18 / Chapter 1.8.1 --- The nature of the signal for CCE --- p.18 / Chapter 1.8.1.1 --- Conformational coupling --- p.18 / Chapter 1.8.1.2 --- Diffusible messenger --- p.21 / Chapter 1.9 --- Mechanism of intracellular calcium measurement --- p.25 / Chapter 1.10 --- Background of E92/3 cell line --- p.28 / Chapter Chapter 2: --- Materials and methods --- p.29 / Chapter 2.1 --- Cell culture --- p.29 / Chapter 2.2 --- Preparation of the simultaneous measurement --- p.31 / Chapter 2.2.1 --- Cell seeding --- p.31 / Chapter 2.2.2 --- Dye loading --- p.33 / Chapter 2.3 --- The setup of simultaneous measurement --- p.36 / Chapter 2.4 --- Statistical analysis --- p.40 / Chapter Chapter 3: --- Results --- p.41 / Chapter 3.1 --- Major domain of Ca2+ influx is from the basolateral side --- p.41 / Chapter 3.1.1 --- Effect of store depletion by apical ATP --- p.41 / Chapter 3.1.2 --- Effect of store depletion by basolateral ATP --- p.43 / Chapter 3.1.3 --- Effect of store depletion by thapsigargin --- p.47 / Chapter 3.2 --- Differential effect of apical and basolateral nucleotides on [Ca2+]i and Isc --- p.51 / Chapter 3.2.1 --- Basolateral ATP activates an increase in [Ca2+]i but not Isc --- p.51 / Chapter 3.2.2 --- Apical and basolateral ATP activated distinct but partially overlapped internal Ca2+ pool --- p.51 / Chapter 3.2.3 --- "Dose-dependent effect of apical or basolateral ATP, UDP and UTP on [Ca2+]i i and Isc" --- p.54 / Chapter 3.3 --- P2Y receptors subtypes on the basolateral membrane --- p.60 / Chapter 3.3.1 --- "Possible involvement of P2X, P2Y1 and P2Y11 purinoceptors on the basolateral membrane" --- p.60 / Chapter 3.3.2 --- "Cross-desensitization of experiments of UTP, ATP and UDP" --- p.60 / Chapter 3.4 --- The ATP-activated Ca2+ pool and thapsigargin-activated Ca2+ pool are partially overlapped --- p.68 / Chapter 3.5 --- Anion secretion activated by Ca2+ -independent pathway --- p.74 / Chapter Chapter 4: --- Discussion --- p.76 / Chapter 4.1 --- The major membrane for the CCE is from the basolateral side --- p.76 / Chapter 4.2 --- Basolateral P2Y receptors --- p.80 / Chapter 4.3 --- Differential effects of apical and basolateral ATP --- p.82 / Chapter 4.3.1 --- Apical and basolateral ATP release Ca2+ from different pools --- p.83 / Chapter 4.3.2 --- Ca2+ -independent mechanism --- p.83 / Chapter 4.3.3 --- Other potential signaling molecules --- p.84 / Chapter Chapter 5: --- Reference --- p.86
42

The roles and regulation of phosphatidylinositol 3,5-bisphosphates in mammals

Zhang, Yanling 01 January 2008 (has links)
Phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] is a low-abundance signaling lipid important for the maintenance of the endomembrane system and selected membrane trafficking pathways. In yeast, in response to hyperosmotic stress, PI(3,5)P2 levels rise more than 20-fold in 5 minutes, and return to near basal levels in 30 minutes. This transient change suggests that PI(3,5)P2 levels are tightly regulated and may be involved in signaling a response to stress. In yeast, PI(3,5)P2 is synthesized through phosphorylation of PI(3)P by the PI(3)P 5-kinase Fab1. Loss of PI(3,5)P2 in yeast causes swollen vacuoles, defective retrograde trafficking from the vacuole, defective vacuole acidification, and mis-localization of a subset of vacuole lumenal proteins. In yeast, Vac14 is a regulator of PI(3,5)P2 levels. Mammalian Vac14 and Fab1 are found in the same complex. To study the physiological significance of PI(3,5)P2, a mouse strain was generated with the Vac14 gene disrupted by a gene-trap genomic insertion. Vac14 protein was not detectable in mutant mice. In fibroblasts cultured from the mutant mice, PI(3,5)P2 and PI(5)P are decreased to 42% and 44% of the corresponding wild-type levels, respectively. The mutant mouse brains exhibit spongiform-like morphology. Cytoplasmic vacuoles are found in neuronal cell bodies of the olfactory bulb, trigeminal ganglion, and dorsal root ganglion. Non-neural tissues appear largely normal. Similar vacuoles are also found in cultured neurons and fibroblasts. In fibroblasts, these vacuoles are formed from swelling of late endosomes/lysosomes. Some early endosomes are also enlarged. A population of cation-independent mannose-6-phosphate receptor (CI-M6PR), which recycles between endosomes and the trans-Golgi network (TGN), is trapped in early and late endosomes, indicating a block in endosome-to-TGN trafficking. These results suggest that: 1) Neurons are acutely sensitive to loss of PI(3,5)P2. 2) In mammals, PI(3,5)P2 is required for the morphology of late endosomes/lysosomes and retrograde trafficking from endosomes to the TGN. The first conclusion is supported by another mouse strain with a retro-transposon inserted in the Fig4 gene. Fig4 is another regulator of PI(3,5)P2 levels. Similar neurodegeneration was observed in the Fig4 mutant mice.
43

Biochemical study of lipid phosphatase SHIP2 in control of PtdIns(3,4,5)P3 in response to serum and H2O2

ZHANG, jing 13 December 2007 (has links)
The control of phosphatidylinositol 3, 4, 5-trisphosphate [PtdIns(3,4,5)P3] level depends on the activities of both PI kinase and PtdIns(3,4,5)P3 phosphatases: 5-phosphatase like SHIP1 and SHIP2, and 3-phosphatase like PTEN. The ubiquitous SH2 domain containing inositol 5-phosphatase SHIP2 contains both a series of protein interacting domains and the ability to dephosphorylate PtdIns(3,4,5)P3. Previous reports obtained in SHIP2 deficient mice have shown that SHIP2 is involved in the control of insulin sensitivity and reducing weight gain on fatty diet. Since SHIP2 is a lipid phosphatase as well as a docking protein, the initial aim that emerged in the lab was to measure the inositol lipid levels in SHIP2 +/+ and deficient cells and compare the levels of 3-phosphoinositides PtdIns(3,4,5)P3 and PtdIns(3,4)P2. At first, we developed mouse embryonic fibroblasts (MEF) as a cellular model. Amongst various stimuli tested, surprisingly, only serum showed an obvious difference in terms of PtdIns(3,4,5)P3 level. This lipid was significantly up regulated in SHIP2 -/- cells but only after short-term (i.e. 5-10 min) incubation with serum. The difference in PtdIns(3,4,5)P3 levels in heterozygous fibroblast cells was intermediate between the +/+ and -/- cells. Serum stimulated PI3K activity appeared to be comparable between +/+ and -/- cells. Moreover, PKB, but not MAP kinase activity, was also potentiated in SHIP2 deficient cells stimulated by serum. The up regulation of PKB activity in serum stimulated cells was totally reversed in the presence of the PI3K inhibitor LY-294002, in both +/+ and -/- cells. Reactive oxygen species (ROS) have emerged as physiological mediators of many cellular responses. H2O2 mimics some effects of insulin in a number of cell culture systems. It also inactivates tyrosine phosphatase activities including PTEN. In addition, in Swiss 3T3 fibroblasts, Gray et al reported that exposure of the cells to H2O2 resulted a huge increase in PtdIns(3,4)P2 level. The authors suspected that the effect was attributed to a inositol 5-phosphatase activity. We thus exposed our cells to H2O2 in order to address the question of the role of SHIP2 in response to oxidative stress. We worked on the same SHIP2 MEF model, stimulated by H2O2: at 15 min, PtdIns(3,4,5)P3 was markedly increased in SHIP2 -/- cells as compared to +/+ cells. In contrast, no significant increase in PtdIns(3,4)P2 could be detected at 15 or 120 min incubation of the cells with H2O2 (0.6 mM). PKB activity was upregulated in SHIP2 -/- cells in response to H2O2 and therefore follows the regulation of PtdIns(3,4,5)P3. As for serum, the PI3K activity appeared to be comparable between +/+ and -/- cells. The levels of PTEN and type I 4-phosphatase [an enzyme that acts on PtdIns(3,4)P2] remained unchanged between the two types of cells. SHIP2 add back experiments in SHIP2 -/- cells confirm its critical role in the control of PtdIns(3,4,5)P3 level in response to H2O2: the decrease in PtdIns(3,4,5)P3, observed in SHIP2 expressing cells, was no longer seen in cells infected with a catalytic mutant of this enzyme.
44

Control of PI4P 5-kinases by reversible phosphorylation in Arabidopsis thaliana

Lerche, Jennifer 10 April 2013 (has links)
No description available.
45

Neuronal Adaptation and Formant Transition Direction in Vowels: An MMN Study

Crawford, Nathanael 11 March 2014 (has links)
Examined was whether the mismatch negativity (MMN) varied predictably in response to changes in the direction of frequency-modulated tone glides and equivalent second formant transitions in vowels (e.g., /ɪ/ as in “bit” and /e/ as in “bate”). A novel stimulus presentation paradigm was designed to distinguish the MMN from the N1 component. 10 normal-hearing adults with no neurological diseases were recruited and presented stimuli via insert earphones while they watched a silent, subtitled movie. Event-related potentials (ERPs) were recorded from 128 scalp electrodes. The MMN was successfully distinguished from the N1, marking participants’ ability to discriminate vowel stimuli only. A significant early P2 component, which decreased in size with successive stimulus presentations, was also elicited for vowels only and is believed to reflect formant encoding. Discrepancies between vowel and tone results are discussed along with clinical implications and contributions to the fields of ERP and vowel research.
46

Elucidating the Role of gpW: an Essential Baseplate Protein in Bacteriophage P2

Fatehi Hassanabad, Mostafa 27 November 2013 (has links)
The long, contractile tails of myophages are the conduit for phage DNA transfer into the bacterial host cell and the most important part of the myophage tail is the baseplate; a complex structure, distal to the phage head. To better understand the structure and function of myophage baseplates, a component of the phage P2 baseplate, gpW was studied. This protein is widely conserved among myophages and is essential for the formation of infectious phage particles. Bioinformatic work confirmed that gpW homologues are found in almost all myophages and in many prophages. Moreover, gpW was shown to be a structural component of the virion; and, using electron microscopy, it was found to be at the top of the P2 baseplate. It was also found that some single residue substitutions can completely disrupt gpW function. Finally, evidence is presented that at least eight different proteins may be required to form intermediate P2 baseplate structures while other proteins may be necessary for the formation of stable baseplate complexes.
47

Elucidating the Role of gpW: an Essential Baseplate Protein in Bacteriophage P2

Fatehi Hassanabad, Mostafa 27 November 2013 (has links)
The long, contractile tails of myophages are the conduit for phage DNA transfer into the bacterial host cell and the most important part of the myophage tail is the baseplate; a complex structure, distal to the phage head. To better understand the structure and function of myophage baseplates, a component of the phage P2 baseplate, gpW was studied. This protein is widely conserved among myophages and is essential for the formation of infectious phage particles. Bioinformatic work confirmed that gpW homologues are found in almost all myophages and in many prophages. Moreover, gpW was shown to be a structural component of the virion; and, using electron microscopy, it was found to be at the top of the P2 baseplate. It was also found that some single residue substitutions can completely disrupt gpW function. Finally, evidence is presented that at least eight different proteins may be required to form intermediate P2 baseplate structures while other proteins may be necessary for the formation of stable baseplate complexes.
48

Regulation of malignant B cell migration by PI(3,4)P2-specific phosphatases and binding proteins

Li, Hongzhao January 2014 (has links)
Cell migration is critical to a wide range of physiological and pathological events and is central to disease progression of B lymphocyte (B cell)-derived leukemia and lymphoma as well as many other types of cancer. It is extensively controlled by phosphoinositide 3-kinase (PI3K), which generates PI(3,4,5)P3 (PIP3) and PI(3,4)P2, lipid messengers that recruit pleckstrin homology (PH)-domain-containing signaling proteins. While PIP3 is known to regulate cell migration, it remains a major unanswered question in the field whether PI(3,4)P2 is also implicated in this cellular function. A series of investigations here on PI(3,4)P2-specific lipid phosphatases and binding proteins in the context of chemotaxing malignant B cells provide the first insights into a previously unappreciated role of PI(3,4)P2 signaling in cell migration. First, I used physiological regulators of PI(3,4)P2, the inositol polyphosphate 4-phosphatase (INPP4) enzymes, as tool to manipulate PI(3,4)P2 levels to determine the function of this lipid second messenger. PI(3,4)P2 depletion by INPP4A or INPP4B relative to phosphatase-dead mutants indicated an essential role of PI(3,4)P2 in mediating both the speed and directionality of chemotaxis. Gene silencing of the authenticated PI(3,4)P2-specific binding protein TAPP2 leads to reduced migration speed and directionality, similar to PI(3,4)P2 depletion. The impaired migration is underlain by alterations in chemokine-induced rearrangement of the actin cytoskeleton, loss of migratory polarity and dysregulation of the leading edge activator Rac. A putative PI(3,4)P2-binding protein, lamellipodin (Lpd), is found to strongly colocalize with PI(3,4)P2 depending on the Lpd PH domain. Lpd knock-down rescue experiments indicated that PI(3,4)P2 controls directionality through Lpd, while Lpd also promotes motility independently of PH domain binding to PI(3,4)P2. The PI(3,4)P2-binding protein kinase Akt/PKB (also binds to PIP3) is found to play a positive role in the B cell context. Here, PI(3,4)P2 depletion does not inhibit phosphorylation of Akt but seemingly reduces its activity. It is likely that PI(3,4)P2 mediates malignant B cell migration in part through promoting Akt activity. Taken together, the thesis work establishes the PI(3,4)P2 pathway as a novel branch of the PI3K signaling network controlling cell migration and suggests that PI(3,4)P2 may integrate diverse downstream migratory pathways to impact on cell migration.
49

Thrombin/ADP-induced platelet activation and drug intervention /

Nylander, Sven, January 2005 (has links) (PDF)
Diss. (sammanfattning) Linköping : Univ., 2005. / Härtill 5 uppsatser.
50

Salivary gland P2 nucleotide receptors structure and function studies /

Landon, Linda A. Neighbors January 1998 (has links)
Thesis (Ph. D.)--University of Missouri--Columbia, 1998. / Typescript. Vita. Includes bibliographical references (leaves: 145-165). Also available on the Internet.

Page generated in 0.025 seconds