• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 14
  • 10
  • 8
  • 4
  • 2
  • 1
  • Tagged with
  • 84
  • 43
  • 26
  • 23
  • 22
  • 17
  • 17
  • 16
  • 13
  • 12
  • 12
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

[en] INVESTIGATION OF THE CHARGE CARRIERS MOBILITY IN POLY(3-HEXYLTHIOPHENE) THIN FILMS PHYSICALLY AND CHEMICALLY MODIFIED USING DIFFERENT EXPERIMENTAL TECHNIQUES / [pt] ESTUDO DA MOBILIDADE DE PORTADORES DE CARGA EM FILMES DE POLI(3-HEXILTIOFENO) MODIFICADOS FÍSICA E QUIMICAMENTE, UTILIZANDO DIFERENTES TÉCNICAS EXPERIMENTAIS

HAROLD JOSE CAMARGO AVILA 07 April 2017 (has links)
[pt] Este trabalho apresenta o estudo da mobilidade de portadores de carga em filmes finos de poli(3-hexiltiofeno) rrP3HT modificados: (a) fisicamente, através da mistura do rrP3HT com o polimetilmetacrilato, PMMA, com diferentes solventes e concentrações; e (b) quimicamente, através da sínteses de novos polímeros baseados de politiofenos com poliselenofeno rrP3HTCoSe com 5 e 10 porcento de Se. Todos os filmes fabricados foram caracterizados através de medidas de absorção UV-Vis, fotoluminescência e absorção no infravermelho. Para as blendas rrP3HT:PMMA, a partir destes espectros e usando o modelo de Spano, foram determinados os valores de acoplamento excitônico W e as semilarguras da distribuição gaussiana de estados sigma mostrando que o comprimento de conjugação, a ordem e a cristalinidade foram aprimoradas nas blendas rrP3HT:PMMA. Medidas J-V e CELIV mostraram que simples diodos baseados nas blendas rrP3HT:PMMA 70:30 exibem valores de mobilidade de portadores maiores (1.0x10 elevado a menos quatro até 5.5x10 elevado a menos quatro centimetro quadrado/Vs), com um aumento de até 450 porcento quando comparados com o valor da mobilidade do rrP3HT puro. Células fotovoltaicas foram fabricadas para avaliar o desempenho da blenda 70:30 apresentando um valor de eficiência 6 vezes maior em relação aos dispositivos baseados em rrP3HT puro. Por outro lado, o estudo da modificação química mostrou altos valores de acoplamento excitônico para os polímeros rrP3HTCoSe de 5 e 10 porcento, o que significa menores comprimentos de conjugação, ordem e cristalinidade. Os valores de mobilidade encontrados nos polímeros rrP3HTCoSe 5 e 10 porcento foram inferiores com relação ao rrP3HT puro, encontrando uma relação direta entre a energia do gap, o comprimento de conjugação e mobilidade de portadores de carga. / [en] This work presents the study of charge carrier mobility in thin films of poly(3-hexylthiphene) rrP3HT modified: (a) physically, through the mixing the rrP3HT with polymethylmethacrylate PMMA with different solvents and concentrations and (b) chemically, through the syntheses of new polymers based on polythiophene and polyselenophene rrP3HTCoSe 5 and 10 percent of Se. All the films produced were characterized by UV-Vis absorption, photoluminescence and infrared absorption measurements. For the rrP3HT:PMMA blends, from these spectra and using the Spano model were determined excitonic bandwidth values W(eV) and half width of the Gaussian distribution of site-energy disorder sigma (eV) showing that the conjugation length, order and crystallinity were improved in rrP3HT:PMMA blends. J-V and CELIV measurements showed that the simples diodes based in rrP3HT:PMMA 70:30 with different solvents showed the highest mobility (1.00x10 to negative 4 power to 5.55x10 to negative 4 power centimeter square/Vs), with an increase of up to 450 percent compared with the value of mobility of rrP3HT pure. Photovoltaic cells were fabricated to evaluated the performance of the blend 70:30 presenting a value conversion efficiency 6 times higher compared to devices based rrP3HT pure. On the other hand, the study of chemical modification showed high values of excitonic bandwidth for the rrP3HTCoSe polymers 5 and 10 percent, which means smaller conjugation lengths, order and crystallinity. The mobility values found in rrP3HTCoSe polymers 5 and 10 percent were lower with respect to rrP3HT pure, finding a direct relationship between Eg, the conjugation length and mobility of charge carriers.
62

Improving Hybrid Solar Cells: Overcoming Charge Extraction Issues in Bulk Mixtures of Polythiophenes and Zinc Oxide Nanostructures

Olson, Grant T 01 June 2014 (has links) (PDF)
Organic photovoltaics (OPVs) have received a great deal of focus in recent years as a possible alternative to expensive silicon based solar technology. Current challenges for organic photovoltaics are centered around improving their lifetimes and increasing their power conversion efficiencies. One approach to improving the lifetime of such devices has been the inclusion of inorganic metal oxide layers, but interaction between the metal oxides and common conjugated polymers is not favorable. Here we present two methods by which the interactions between polythiophenes and nanostructured ZnO can be made to be more favorable. Using the first method, direct side on attachment of polythiophene to ZnO nanowires via chemical grafting, we demonstrate chemical linkage between the polymer and ZnO phases. The attachment was confirmed to affect the morphological properties of the polymer layer as well, inducing highly ordered regions of the polymer at the ZnO surface via chemical attachment and physical adsorption. Using the second method to improve polythiophene ZnO interactions, we have functionalized ZnO nanowires with organic molecules that favorably interact with conjugated polymer and organic solvents. Photovoltaic devices were made using a blended active layer of functionalized ZnO nanowires and P3HT. Electrical analysis of the resultant devices concluded that the devices were functional photovoltaic cells and isolated the dominant loss mechanisms for further device improvement.
63

Cellules solaires hybrides en couches minces à base de silicium nano-structuré et de polymères semiconducteurs.

Alet, Pierre-Jean 14 November 2008 (has links) (PDF)
Cette thèse présente un travail exploratoire sur des cellules solaires hybrides, basées sur un matériau inorganique (le silicium) et un polymère (le P3HT). Cette structure a été imaginée pour améliorer les cellules à bas coûts à base de matériaux organiques. Nous démontrons ici sa faisabilité expérimentale et analysons son fonctionnement. L'hétérojonction entre le silicium et le P3HT a été étudiée sur des dispositifs en bicouches planes. Nous montrons qu'elle fournit de l'énergie électrique et que les deux matériaux peuvent contribuer au photocourant. Des rendements de 1,6 % ont été obtenus. Un effort constant a été fait pour simplifier et fiabiliser les procédés de fabrication. Deux nouveaux types de silicium nano-structuré ont été développés. Des ``nano-éponges'', dont la taille typique des pores est de 20 nm, ont été obtenues à l'aide de catalyseurs métalliques par dépôts assistés par plasma à 175 °C. Des nanofils de silicium ont été formés par un procédé inédit : les substrats sont des oxydes transparents conducteurs, les catalyseurs sont générés in situ et la température de croissance est inférieure à 300 °C. La phase würtzite a été mise en évidence dans certains fils, et divers modes de croissance ont été observés. Ces deux nouveaux types de couches minces pourront aussi être utilisées dans des cellules solaires inorganiques.
64

Vertical charge transport in conjugated polymers

Skrypnychuk, Vasyl January 2017 (has links)
Conjugated polymers are novel organic electronic materials highly important for organic photovoltaic applications. Charge transport is one of the key properties which defines the performance of conjugated polymers in electronic devices. This work aims to explore the charge transport anisotropy in thin films of P3HT, one of the most common conjugated polymers. Using X-ray diffraction techniques and charge transport measurements, the relation between vertical charge transport through thin P3HT films and structure of the films was established. It was shown that particular orientations of crystalline domains of P3HT, namely face-on and chain-on, are beneficial for vertical charge transport. These orientations provide the efficient pathways for the charges to be transported vertically, either via π-π stacking interaction between the adjacent conjugated chains, or via the conjugated chain backbones. It was also demonstrated that particular orientations of crystallites are favourable for the formation of interconnected percolated pathways providing enhanced vertical charge transport across the film. Deposition of P3HT on most commonly used silicon substrates typically results in the formation of mostly edge-on orientation of crystallites which is unfavourable for vertical charge transport. Nanoimprint lithography was demonstrated as a powerful processing method for reorienting the edge-on crystalline domains of P3HT into chain-on (vertical) orientation. It is also shown that thin P3HT films with preferentially face-on orientations of crystallites can be deposited on graphene surface by spin coating. Using patterning of thin P3HT films by nanoimprint lithography, unprecedentedly high average vertical mobilities in the range of 3.1-10.6 cm2 V-1 s-1 were achieved in undoped P3HT. These results demonstrate that charge transport in thin films of a relatively simple and well-known conjugated polymer P3HT can be significantly improved using optimization of crystallinity,orientation of crystallites, polymer chain orientation and alignment in the films.
65

Measuring the efficiency and charge carrier mobility of organic solar cells

ABUDULIMU, ABASI January 2012 (has links)
P3HT single layer, P3HT/PCBM bilayer and P3HT/PCBM inverted bilayer devices were produced by spin coating organic layers onto ITO patterned glass in air, and clamping it with an Au coated silicon wafer, as top electrode, at the end (Figure13). Normal and inverted bilayer devices were also fabricated with and without PEDOT:PSS. All devices were divided into two groups by changing concentration of P3HT solution. The first group of devices contained 1.0 wt. % P3HT solution (P3HT in dichlorobenzene); the second group 0.56wt %. Power conversion efficiency, short circuit current, open circuit voltage, fill factor and maximum extracted power were measured on all produced devices. In contrast, all devices with 1.0wt % P3HT concentration showed better result than the devices with 0.56wt %. The highest result was obtained for P3HT single layer devices in both cases with short circuit current 56uA/cm2, open circuit voltage 0.94mV, maximum power 11.4uW/cm2 and power conversion efficiency of 0.11%. Inverted bilayer devices performed better than the non-inverted one. The devices with PEDOT:PSS got slightly better performance than the non-PEDOT:PSS used one. Charge carrier mobility measurement was done for all fabricated devices with charge extraction by linearly increasing voltage (CELIV) and dark injected space charge limited current (DI-SCLC) methods. All devices showed same magnitude of charge carrier mobility 10-5 cm2/V.s, the highest value still belongs to P3HT single layer device. The charge carrier mobility in all devices observed by DI-SCLC technique is one order of magnitude higher than by CELIV technique. This may be due to DI-SCLC method`s restriction on ohmic contacts between material and electrode. / بۇ تەتقىقاتتا ئورگانىك ماتېرىيالدىن پايدىلنىپ ئۈچ خىل قۇياش ئىنىرگىيەلىك باتارىيە ئادەتتىكى ئۆي مۇھىتىدا ياساپ چىقىلدى. ئەڭ چوڭ توك كۈچى، ئەڭ                                                    يۇقىرى بېسىم، ئەڭ يۇقىرى قۇۋەت ۋە زەرەت يۆتكۈلۈش تېزلىكى ئۆلچەپ چىقىلدى ئۇيغۇر
66

Blends of Polydioctylfluorene (PFO) with polymeric and monomeric energy acceptors: correlation of fluorescence energy transfer and film morphology in breath figures and films

Nguyen, Vu Anh 13 May 2008 (has links)
Fluorescence energy transfer from poly(9,9-dioctylfluorene) to polymeric energy acceptors that include head-to-tail regioregular poly(3-hexylthiophene or P3HT) and poly(2-methoxy-5(2 -ethylhexyloxy)-1,4-phenylenevinylene) or MEH-PPV and monomeric acceptor meso-tetraphenylporphyrin or TPP was studied and correlated with the underlying morphology when the donor-acceptor blends were prepared as drop-coated films or breath-figure structures. It was found that the phase-separate morphology in films and breath figures was influenced by a number of factors, including material transport dynamics, solubility of the blend components in a solvent, interaction of the solvent with the substrate, and the diffusion rate of the blend components.
67

Interface Engineering and Evaluation of Device Performance in Organic Photovoltaics

Rao, Arun Dhumal January 2015 (has links) (PDF)
In recent years, organic photovoltaics (OPVs) have attracted considerable attention as a potential source of renewable energy over traditional materials due to their light weight, low production cost, mechanically stability and compatibility with flexible substrates in roll to roll processing for high volume production. In the OPVs interface plays an important role in determining the performance of the device. Interface signifies formation of efficient contact with electrode, film, and transport of free charge carrier, which results in better performance in the device. Interface engineering also helps in improving mechanical robustness of the device. Hence, understanding of interface, modification and its evaluation is important in fabrication of efficient device. In this thesis interface is modified such that the performance of the device can be improved (chapter 3 and chapter 4). In Chapter 5 and chapter 6 interface is modified such that device can be fabricated on uncommon substrate. Fabrication of device on uncommon substrates (fiber reinforced plastic and flexible glass substrate), has unique challenges. In chapter 5 and chapter 6, we look at how interface is modified to overcome the challenges associated and also understand the role of interface in improving the performance of device on such substrates is discussed. In Chapter 1 we discuss about working of organic solar cells and the challenges associated in device fabrication. Understanding of interface to overcome challenges associated is explained. It also covers brief introduction to the succeeding chapters discussed in the thesis and its recent developments. To understand the properties of interface and to analyze device performance various characterization techniques have been used are discussed in chapter 2. This chapter also covers the materials and general device fabrication techniques used in this thesis. In chapter 3, a narrow bandgap (NBG) polymer used as a near IR sensitizer in P3HT: PCBM blend. Since, P3HT with a band gap of ~1.9 eV, the commonly used p-type material absorbs approximately ~25 % of incident light. Hence, MP2 (NBG polymer) is used along with P3HT: PCBM in active layer to form a ternary blend, which helps in increased absorption. Basic properties of MP2 are evaluated using UV-visible spectroscopy, differential scanning calaorimetry(DSC), thermogravimetric analyser (TGA), gel permeation chromatography (GPC) and photoluminescence (PL) techniques. To evaluate enhanced absorption of ternary UV-visible spectroscopy is carried out. Charge transfer from one moiety to other in ternary blend is evaluated using PL and Ttime resolved microwave conductivity (TRMC). Morphology of the ternary is assessed using atomic force microscope (AFM) and structural characterization is carried out by X-ray diffraction (XRD). Performance of the device is evaluated by current-voltage (J-V) characterizations. Further improved performance is supported by external quantum efficiency (EQE). Charge extraction with linear increasing voltage (CELIV) of the device is done to evaluate the recombination mechanism in the device and to assess the performance of the device. One-dimensional (1D) ZnO nanostructures provide direct paths for charge transport, and also offer large interfacial area to make them an ideal electron transport layer. In chapter 4 highly aligned ZnO nanorods is used as electron transport layer in OPV. Growth of ZnO nanorods is two-step processes, growing seed layer and growing ZnO nanorods from hydrothermal process using an appropriate seed layer. Two different soft-chemical solution- growth methods (upward and downward) are developed to fabricate self-assembled, oriented ZnO nanorods. Substrate mounting, surface properties and optical transmittance are optimized by varying the nanorods growth conditions. Further the ZnO nanorods are UV ozone treated and its effect on performance of nanostructured buffer layer based device is evaluated. In Chapter 5 OPV is fabricated on an opaque FRP substrate. Fabrication of OPV device on opaque substrate plastic is unique and hence understanding various properties is vital. Such devices fabrication require bottom up approach, with transparent electrode as the top electrode and metal electrode on the surface of FRP. FRP has inherent rough surface of about few microns RMS roughness. In order to reduce the roughness of the substrate FRP was planarized. The planarized layer is chosen, such that it chemically binds with the substrate. The chemical interaction between substrate and planarizing coating is evaluated by FTIR and Raman spectroscopy. The binding of planarized layer and FRP is evaluated using nanoscratch technique and surface energies are studied using contact angle measurements. In addition, adhesion properties of the metal electrodes, which are deposited on planarized FRP are evaluated using nanoscratch technique. Fabrication of OPV requires a top transparent electrode. Simple spin coating technique is used to optimize the top electrode. The property of top electrode is evaluated using UV-visible spectroscopy for transmittance, and sheet resistance of the electrode is characterized. OPV device is fabricated on planarized FRP substrate using optimized top transparent electrode and its PV properties is evaluated. Performance of the device is evaluated for two different bottom electrodes and further performance of device is enhanced using buffer layers. Usually flexible OPVs are fabricated on plastic substrate such as PET, PEN. However they are not structurally stable at high temperatures and have high oxygen and moisture Permeability. In Chapter 6 Organic based photovoltaic devices were fabricated on flexible glass. Flexible glass has high strength and it is also known for low oxygen and moisture permeability. Fabrication of device on flexible glass has never been done before and hence, generation of data is necessary for commercialization of the technology. Device fabrication is optimized by using two different transparent conducting layers (ITO- sputter deposited, PEDOT: PSS-solution processed) and device performance was evaluated for both. Since the substrate is flexible in nature understanding the performance of the device during flexing is important. For this 2-parallel plate flexural apparatus is fabricated for in-situ measurements along with current voltage measurements. These devices are flexed cyclically and performance of device is evaluated. Therefore, work discussed in the thesis show by modifying the interface of the device, and understanding various interfaces of the device is crucial for improving the performance of the device. Also by engineering the interface, devices can be fabricated on various types of substrate.
68

Synthesis and Characterization of CdSe/ZnS Core/Shell Quantum Dot Sensitized PCPDTBT-P3HT:PCBM Organic Photovoltaics

Bump, Buddy J 01 July 2014 (has links)
Durable, cheap, and lightweight polymer based solar cells are needed, if simply to meet the demand for decentralized electrical power production in traditionally “off-grid” areas. Using a blend of Poly(3-hexylthiophene-2,5-diyl) (P3HT), Phenyl-C61-butyric acid methyl ester (PCBM), and the low band-gap polymer Poly[2,6-(4,4-bis-(2- ethylhexyl)-4H-cyclopenta [2,1-b;3,4-b′]dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT), we have fabricated devices with a wide spectral response and 3% power conversion efficiency in AM 1.5 conditions; however, this thin film system exhibits only 0.43 optical density at 500 nm. To improve the performance of this polymer blend photovoltaic, we aim to increase absorption by adding CdSe(ZnS) core (shell) quantum dots. Four groups of devices are fabricated: a control group with an active polymer layer of 16 mg/mL P3HT, 16 mg/mL PCBM, and 4 mg/mL PCPDTBT; and three groups with dispersed quantum dots at 4 mg/ml, 1 mg/mL, and 0.25 mg/mL. The (CdSe)ZnS quantum dots are coated with octadecylamine ligands and have a peak absorbance at 560 nm and peak emission at 577 nm. The active layer was dissolved in chlorobenzene solvent and spun on glass substrates, patterned with indium tin oxide. The devices were then annealed for fifteen minutes at 110° C, 140° C, and 170° C. Current-voltage characteristic curves v and optical density data were taken before and after the anneal step. Finally, surface characterization was conducted with atomic force microscopy and electrostatic force microscopy. When compared to the control, the sensitized devices exhibited increased absorption and depressed electrical performance with increasing quantum dot loading. The surface morphology, both electrical and physical, showed deviation from the typical values and patterns shown by the control that increased with quantum dot loading. When the degrading electrical characteristics, increasing optical absorbance, and surface changes, are considered together, it becomes likely that the quantum dots interact in a significant manner with the morphology of the P3HT phase, which leads to an overall decrease in performance.
69

Photovoltaic and gas sensing applications of transitional metal nanocomposites of poly(3-hexylthiophene)-titanium dioxide

Maake, Popoti Jacqueline January 2021 (has links)
>Magister Scientiae - MSc / This thesis starts with the reviewing of studies on the loading of noble metals and nanostructured metal oxides into bulk heterojunction organic solar cell device architectures. The reviews focused on the innovative developments in the use of various fullerene derivatives as electron acceptors in organic solar cells. It additionally reflected on the effect of metallic nanoparticles (NPs), such as gold (Au) and silver (Ag), on the performance of organic solar cells. Besides the metallic NPs, the effect of metal oxide nanoparticle loading, e.g. CuO, ZnO and TiO2, on the organic solar cell performance, and the use of noble metals doped TiO2 on the gas sensing application were reviewed. / 2024
70

Characterization of P3HT:thermoplastic blends prepared via direct-ink writing

Creran, Myles 12 1900 (has links)
Les dispositifs optoélectroniques sont devenus un élément essentiel de la technologie moderne visant à exploiter des applications de niche pour l'électronique flexible à base de composés organiques. Jusqu'à présent, les films minces préparés à partir de composés polymères conjugués ont été les principaux concurrents pour les dispositifs optoélectroniques organiques. Avec l'apparition de nouvelles méthodes de mise en œuvre et de nouveaux besoins électroniques, les méthodes de fabrication additive des matériaux optoélectroniques suscitent de plus en plus d'intérêt. Malgré l'intérêt croissant et la variété des méthodes de mise en œuvre tridimensionnelles, on comprend encore mal l'impact de la technique de mise en œuvre sur l'organisation moléculaire des échantillons. Ici, une étude est présentée impliquant l’impression 3D assistée par évaporation de solvant et le poly(3-hexylthiophène) (P3HT) qui est bien décrit dans la littérature, et, dans ce cas-ci, mélangé à diverses matrices thermoplastiques. Dans un premier temps, les matrices thermoplastiques employées, i.e. le polystyrène (PS), le polypropylène carbonate (PPC), le polyméthacrylate de méthyle (PMMA) et le polyoxyéthylène (PEO) sont évaluées en fonction de leurs propriétés rhéologiques et de leur imprimabilité en 3D, qui ne sont que très peu affectées par l'introduction du P3HT. Par la suite, le P3HT à régiorégularité élevée et faible est mélangé dans chacune des matrices thermoplastiques. L'organisation moléculaire des deux composantes dans les architectures imprimées a été évaluée par des techniques de spectroscopie UV-visible et de fluorescence. Les phases en présence ont été analysées à l'aide d’analyse calorimétrique différentielle à balayage, de microscopie optique polarisée et de diffraction des rayons X, ce qui a également permis d'analyser l'état d'agrégation du P3HT par rapport à celui retrouvé dans les films minces. Il est intéressant de noter que les propriétés optiques montrent peu ou pas de différence entre les architectures 3D et les films minces, ce qui indique vraisemblablement que l'efficacité d'un dispositif optoélectronique imprimé en 3D ne serait pas affectée par l’impression 3D assistée par évaporation de solvant. Cette étude pourrait permettre de mieux comprendre comment il serait possible de mettre au point des dispositifs optoélectroniques, y compris des photoconducteurs, des photovoltaïques organiques, des transistors à effet de champ organiques, etc. à l’aide de techniques de fabrication additive, ce qui ouvrira la voie à une nouvelle ère en électronique organique imprimée en trois dimensions. / Optoelectronic devices have become a staple in modern day technology which aims to transition to flexible electronics that are developed from organic compounds. To date, 2-dimensional films of conjugated polymer compounds have been the main contender for organic optoelectronic devices. As new processing methods and electronic needs become present in the modern day, a focus on 3-dimensional processing methods of optoelectronic materials have become increasingly of interest. With the increasing interest and variety of 3-dimensional processing methods, there is little understanding of how the processing technique molecularly affects the final product. Herein is presented a study on the extrusion-based, direct-ink writing of the well understood poly(3-hexylthiophene-2,5-diyl) (P3HT) blended into a variety of thermoplastic matrices. Initially the pristine thermoplastics of polystyrene (PS), poly(propylene carbonate) (PPC), poly(methyl methacrylate) (PMMA), and poly(ethylene oxide) (PEO) were evaluated based on their rheological and printable properties which are negligibly affected by the introduction of P3HT. Subsequently, after the blending of both high and low regioregular P3HT into each of the thermoplastic matrices, the printed architectures were further analyzed by X-Ray diffraction, UV-vis, and fluorescence techniques to assess the aggregation state of P3HT in comparison to 2-dimensional processed films. Interestingly, the electronic properties show little to no difference between 3-dimensional architectures and 2-dimensional films, which presumably indicates that the efficiency would not be affected by the direct-ink writing technique. This study could contribute to the beginning of producing optoelectronic devices, including photoconductors, organic photovoltaic and organic field effect transistors, in 3-dimensions resulting in a new age of electronics.

Page generated in 0.0187 seconds