• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Far-Red Limit of Photosynthesis

Mokvist, Fredrik January 2014 (has links)
The photosynthetic process has the unique ability to capture energy from sunlight and accumulate that energy in sugars and starch. This thesis deals with the light driven part of photosynthesis. The aim has been to investigate how the light-absorbing protein complexes Photosystem I (PS I) and Photosystem II (PS II), react upon illumination of light with lower energy (far-red light; 700-850 nm) than the absorption peak at respective primary donor, P700 and P680.  The results were unexpected. At 295 K, we showed that both PS I and PS II were able to perform photochemistry with light up to 130 nm above its respective primary donor absorption maxima. As such, it was found that the primary donors’ action spectra extended approximately 80 nm further out into the red-region of the spectrum than previously reported.  The ability to perform photochemistry with far-red light was conserved at cryogenic temperatures (< 77 K) in both photosystems. By performing EPR measurements on various photosystem preparations, under different illumination conditions the origin of the effect was localized to their respective reaction center. It is also likely that underlying mechanism is analogous for PS I and PS II, given the similarities in spatial coordination of the reaction center pigments. For PS II, the results obtained allowed us to suggest a model involving a previously unknown electron transfer pathway. This model is based upon the conclusion that the primary cation from primary charge separation induced by far-red light resides primarily on ChlD1 in P680. This is in contrast to the cation being located on PD1, as has been suggested as for visible light illumination. The property to drive photochemistry with far-red wavelengths implies a hither to unknown absorption band, probably originating from the pigments that compose P700 and P680. The results presented here might clarify how the pigments inside P680 are coupled and also how the complex charge separation processes within the first picoseconds that initiate photosynthetic reactions occur.
2

Laserspektroskopie an Photosystem II Zur Proton-Elektron-Kopplung bei Tyrosin Z und über die Natur der Chlorophyll a Entität P680 / Laser flash spectroscopy of photosystem II The proton-electron-coupling around tyrosine Z and the nature of the chlorophyll a entity P680

Ahlbrink, Ralf 12 December 2002 (has links)
"Laser flash spectroscopy of photosystem II" Photosystem II (PS II) of plants and cyanobacteria oxidizes water in a light-powered reaction. Thereby, this protein is the ultimate source of the atmospheric oxygen. The capacity to oxidize water is owed to two properties of PS II: (i) The midpoint potential of the oxidizing chlorophyll moiety is increased by 0.6 V compared to photosystem I or photochemical reaction centers of anoxygenic bacteria, and (ii) the energy requirements of the four steps needed for the tetravalent oxidation of water are adapted to the energy of red light quanta. This thesis deals with two particular aspects, namely: 1. The coupling of the electron transfer from tyrosine Z (YZ) to the primary donor (P680+) to proton transfer, and an inquiry on the role of a positive charge on YZox (plus base cluster) in increasing the oxidizing potential at the catalytic site. 2. The localization of the electron hole, P680+, among the excitonically coupled four inner chlorophyll a molecules, and an estimation of the midpoint potential differences between them. Electron-proton-coupling by YZ This study was carried out with PS II core complexes from spinach or pea with a deactivated (removed) manganese cluster. The reduction of P680+ was investigated as a function of pH by detecting the laser flash induced absorption changes with nanosecond resolution. Two kinetic components were found with different pH-dependence and activation energies. The alteration of kinetic parameters by H/D isotope substitutions or by addition of divalent cations implied two different types of YZ-oxidation: At acidic pH the electron transfer was coupled with proton transfer, whereas in the alkaline region it was more rapid and no longer controlled by proton transfer. The conversion between both mechanisms occured at pH 7.4. This value corresponds either to the apparent pK of YZ itself (i.e. of the hydroxy group of the phenol ring) or to the pK of an acid-base-cluster, which includes YZ. Independent measurements of pH-transients by following the absorption changes of hydrophilic proton indicators corroborated this notion. The data were interpreted as indicating that the phenolic proton of YZ was released into the medium at acidic, but not at alkaline pH. The electron transfer and proton release characteristics of intact, oxygen-evolving PS II resembled those in deactivated samples kept at alkaline pH. We concluded that the electron transfer from YZ to P680+ in the native system was not coupled with proton transfer into the bulk. This has shed doubt on a popular hypothesis on the role of YZ as 'hydrogen abstractor' from bound water. On the other hand, the energetic constraints of water oxidation could be eased by the positive upcharging during oxidation of YZox plus its base cluster. On the localization of the electron hole of P680+ Photooxidation of PS II oxidizes the set of four innermost chlorophyll a molecules giving rise to the only spectroscopically defined species P680+. The deconvolution of difference spectra into bands of pigments is ambiguous. By using photoselective excitation of antennae, i.e. chl a molecules with site specific energies at the long wavelength border of the mean Qy-band, and by polarized detection, it was possible to tag P680+QA-/P680QA and 3P680/P680 difference spectra with a further parameter, the (wavelength-dependent) anisotropy r. Results obtained at liquid nitrogen temperature (77 K) can be clearly interpreted in terms of two chl a monomer bands. The two main components of the P680+QA-/P680QA difference spectrum were marked by two distinct values of the anisotropy and could be interpreted in a straightforward manner: the bleaching of a band at 675 nm belonging to the charged species (chl a+) and an electrochromic blue-shift of a nearby chl a from 684 to 682 nm. The main bleaching band of the 3P680/P680 spectrum (at 77 K) can be apparently attributed to a third (or several) chl a component(s). The analysis of the P680+QA-/P680QA spectrum at cryogenic temperature is compatible with monomeric chl a bands. On the other hand, one could assume a system of excitonically coupled core pigments, as it was recently introduced in the literature on the basis of energy transfer studies ('multimer model'). However, in view of the clear indications for an electrochromic band shift and the location of the bleaching band, which absorbs in a wavelength region of monomeric chl a, one assumption of the 'multimer model' should be questioned. Presumably, the excitonic couplings are rather weak, in particular between each of the two central chl a-molecules (PA/PB) and its respective accessory chl a (BA/BB), because of (i) the distances and (ii) different site energies of the monomeric chromophores. At room temperature, the absorption difference and anisotropy spectra of P680+QA-/P680QA were clearly altered. The anisotropy data indicated that the changes could no longer exclusively be ascribed to thermal broadening of individual bands. The localization of the positive charge on one pigment, analogous to the situation at 77 K, was now unlikely. Hence, the midpoint potential differences between the inner four chlorophyll a molecules were small and were estimated as approximately 15 meV.

Page generated in 0.0318 seconds