1 |
Regulation of MCMV immediate early gene expression by virally encoded miRNAs / Regulation der MCMV immediate early Genexpression durch viral kodierte miRNAsHerb, Stefanie Maria January 2023 (has links) (PDF)
Gene expression in eukaryotic cells is regulated by the combinatorial action of numerous gene-regulatory factors, among which microRNAs (miRNAs) play a fundamental role at the post-transcriptional level. miRNAs are single-stranded, small non-coding RNA molecules that emerge in a cascade-like fashion via the generation of primary and precursor miRNAs. Mature miRNAs become functional when incorporated into the RNA induced silencing complex (RISC). miRNAs guide RISCs to target mRNAs in a sequence-specific fashion. To this end, base-pairs are usually formed between the miRNA seed region, spanning nucleotide positions 2 to 8 (from the 5' end) and the 3'UTR of the target mRNA. Once miRNA-mRNA interaction is established, RISC represses translation and occasionally induces direct or indirect target mRNA degradation. Interestingly, miRNAs are expressed not only in every multicellular organism but are also encoded by several viruses, predominately by herpesviruses. By controlling both, cellular as well as viral mRNA transcripts, virus-encoded miRNAs confer many beneficial effects on viral growth and persistence. Murine cytomegalovirus (MCMV) is a ß-herpesvirus and so far, 29 mature MCMV-encoded miRNAs have been identified during lytic infection. Computational analysis of previously conducted photoactivated ribonucleotide-enhanced individual nucleotide resolution crosslinking immunoprecipitation (PAR-iCLIP) experiments identified a read cluster within the 3' untranslated region (3'UTR) of the immediate early 3 (IE3) transcript in MCMV. Based on miRNA target predictions, two highly abundant MCMV miRNAs, namely miR-m01-2-3p and miR-M23-2-3p were found to potentially bind to two closely positioned target sites within the IE3 PAR-iCLIP peak. To confirm this hypothesis, we performed luciferase assays and showed that activity values of a luciferase fused with the 3'UTR of IE3 were downregulated in the presence of miR-m01- 2 and miR-M23-2. In a second step, we investigated the effect of pre-expression of miR-m01-2 and miR-M23-2 on the induction of virus replication. After optimizing the transfection procedure by comparing different reagents and conditions, plaque formation was monitored. We could demonstrate that the replication cycle of the wild-type but not of our MCMV mutant that harbored point mutations in both miRNA binding sites within the IE3-3'UTR, was significantly delayed in the presence of miR-m01-2 and miR-M23-2. This confirmed that miR-m01-2 and miR-M23-2 functionally target the major transcription factor IE3 which acts as an indispensable regulator of viral gene expression during MCMV lytic infection. Repression of the major immediate early genes by viral miRNAs is a conserved feature of cytomegaloviruses. The functional role of this type of regulation can now be studied in the MCMV mouse model. / In eukaryotischen Zellen wird die Expression von Genen durch das Zusammenspiel vieler verschiedener biologischer Regulatoren, wie microRNAs (miRNAs), kontrolliert. MiRNAs sind einzelsträngige, kurze, nicht-kodierende RNA-Moleküle, die aus sogenannten primären miRNAs und Vorläufer-miRNAs entstehen und die Genexpression auf Ebene der Posttranskription beeinflussen. Um ihre Funktion ausüben zu können, werden reife miRNAs in RNA-induzierte Silencing-Komplexe (RISCs) eingebaut und zu ihren Ziel-mRNAs geführt. Durch Wechselwirkungen zwischen der miRNA "seed-Region , die die Nukleotide 2 bis 8 vom 5'-Ende überspannt und der 3'UTR (3' untranslatierte Region) der Ziel-mRNA, unterdrückt RISC die Translation der Ziel-mRNA und kann deren Abbau durch direkte sowie indirekte Mechanismen induzieren. Die Expression von miRNAs wurde nicht nur in multizellulären Organismen, sondern in bereits zahlreichen Viren, insbesondere in der Virusfamilie der Herpesviridae, nachgew- iesen. Viruskodierte miRNAs kontrollieren dabei zelluläre wie auch virale mRNA-Transkripte und verleihen dem Virus einen Selektionsvorteil bzgl. Wachstum und Persistenz. Das mur- ine Cytomegalievirus (MCMV) ist ein β-Herpesvirus, das nach aktuellem Wissensstand 29 reife miRNAs kodiert, die allesamt während der lytischen Infektion identifziert wurden. Bioinformatische Analysen eines vor dieser Arbeit durchgeführten PAR-iCLIP-Experiments (photoactivated ribonucleotide-enhanced individual nucleotide resolution crosslinking and immunoprecipitation), zeigten einen PAR-iCLIP Peak in der 3'UTR (3' untranslatierte Region) des immediate early 3-Transkripts (IE3) von MCMV. Unter Verwendung von RNAhbybrid, einem miRNA target prediction tool, fanden sich zwei virale miRNAs, näm- lich miR-m01-2-3p und miR-M23-2-3p mit potentiellen Bindestellen innerhalb der 3'UTR des MCMV IE3 Transkripts. Unsere konsekutiv durchgeführten Luciferase-Assays be- stätigten, dass sowohl miR-m01-2 als auch miR-M23-2 an die 3'UTR von IE3 binden. Beide viralen miRNAs führten zu einer verminderten Luciferaseaktivität unter Verwendung von Reportern, in denen die 3'UTR des IE3-Gens mit dem Luciferase-Transkript fusioniert war. xxiv Summary Das IE3 Protein gilt während des lytischen Zykluses als einer der wichtigsten Transkrip- tionsfaktoren von MCMV. Ebenfalls wurde der Einfluss der beiden viralen miRNAs auf die virale Reproduktion von uns untersucht. Hierfür wurden murine Zelllinien vor Infektion mit miR-m01-2 und miR- M23-2 transziert. Das Transfektionsverfahren optimierten wir zunächst durch Testung verschiedener Reagenzien und experimenteller Bedingungen. Schließlich zeigten wir mittels Plaqueassays, dass eine vor Infektion durchgeführte Transfektion mit miR-m01-2 und miR- M23-2 die Replikation von MCMV signifikant verzögerte. Unter Verwendung einer MCMV- Mutante, die durch Punktmutationen in beiden miRNA-Bindungsstellen innerhalb der IE3- 3'UTR charakterisiert war, ließ sich dieser Effekt aufheben. Unsere Experimente weisen somit stark darauf hin, dass miR-m01-2 und miR-M23-2 die Expression des IE3 Proteins regulieren und damit indirekt Einfluss auf die Genexpression während der lytischen Phase des Replikationszykluses von MCMV nehmen. Die miRNA-mediierte Repression der immediate early Genexpression stellt ein evolutionär konserviertes Merkmal von Zytomegalieviren dar. Für eine weitere Einordnung der Rolle dieser Genexpressionskontrolle bedarf es zukünftige Untersuchungen im MCMV-Tiermodell
|
2 |
Functional characterization of the FET family of RNA-binding proteinsBaethge, Kerstin 03 July 2014 (has links)
RNA-bindende Proteine spielen eine zentrale Rolle in der posttranskriptionellen Kontrolle von mRNAs, die zwischen Transkription und Abbau von mRNAs stattfindet. RNA-bindende Proteine beeinflussen Spleißen, Export, Stabilität, Lokalisierung und Translation von mRNAs. FUS, EWSR1 und TAF15 gehören zu der Familie der FET Proteine. Diese wirken an verschiedenen zellulären Prozessen wie Transkription, Spleißen und der Prozessierung von miRNAs mit. Translokationen und Mutationen der FET Proteine führen zu verschiedenen Krankheiten. FUS spielt eine Rolle bei den neurodegenerativen Krankheiten frontotemporale Lobärdegeneration (FTLD) und amyotrophe Lateralsklerose (ALS). In dieser Arbeit wurde die mithilfe von photoaktivierbaren Ribonukleotiden UV-Licht induzierte Quervernetzung und Immunpräzipitation (PAR-CLIP) Methode genutzt, um die RNA-Bindestellen von FUS, EWSR1 und TAF15, einer ALS-verursachenden FUS Mutante und einem anderen, mit ALS in Verbindung stehenden Protein, TARDBP, zu bestimmen. Die RNA-Bindestellen der FET-Proteine lagen größtenteils in Introns. Passend dazu konnte durch knockdown der FET Proteine eine Rolle von FUS und EWSR1 im Spleißen von mRNAs validiert werden. Dem Ubiquitin-Proteasom-System zugehörige RNAs waren unter den sowohl von FUS als auch TARDBP gebundenen mRNAs überrepräsentiert. Dies bestätigt die Annahme, dass Störungen in der Proteindegradation die ALS-Pathogenese beeinflussen. Zusätzlich konnte gezeigt werden, dass FUS und TAF15 bevorzugt UAC-reiche, einzelsträngige RNA-Sequenzen binden. Sequenzierung von mRNAs nach Depletion von FUS, EWSR1 und TAF15 in HEK293-Zellen zeigte einen stabilisierenden Effekt der FET-Proteine auf gebundene mRNAs. Desweiteren scheinen die FET Proteine durch Interaktion mit Promotor-assoziierten, nicht-kodierenden RNAs die Transkription zu beeinflussen. / Post-transcriptional regulation of gene expression takes place at multiple levels between transcription and decay of the mRNA. RNA-binding proteins play a key role in orchestrating splicing, export, stability, localization and translation of mRNAs. FUS, EWSR1 and TAF15 constitute the FET protein family which participates in multiple levels of cellular function. FET proteins have been implicated to function in various cellular processes including transcription, pre-mRNA splicing and miRNA processing. Translocations and mutations in FET proteins lead to diverse pathologies. FUS is involved in neurodegenerative diseases like frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). In this study, Photoactivatable-Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation (PAR-CLIP) was used to determine RNA-targets and binding sites of FUS, EWSR1 and TAF15, an ALS-causing FUS mutant and another ALS-related protein, TARDBP. The identified binding sites of FET proteins were mainly intronic, supporting the involvement of FUS and EWSR1 in splicing, which was validated by FET protein knockdown. Comparison of FUS and TARDBP RNA targets revealed that ubiquitin-proteasome related gene categories were overrepresented, further illustrating that aberrations in protein degradation are implicated in the pathogenesis of ALS. In addition, it was shown that FUS and TAF15 proteins preferentially bind UAC rich, single-stranded RNA sequences. mRNA sequencing after FUS, EWSR1 and TAF15 depletion in HEK293 cells revealed a stabilizing effect on their targets. Interestingly, FET proteins also seem to influence transcription by interaction with promoter-associated noncoding RNAs. In summary, we identified the RNA-targets and binding sites of all human FET proteins in comparison with an ALS-causing FUS mutant and TARDBP. Functional studies revealed an involvement of FET proteins in mRNA stabilization, splicing and transcriptional regulation.
|
3 |
Transcriptome maps of general eukaryotic RNA degradation factors and identification and functional characterization of the novel mRNA modification N<sup>3</sup>-methylcytidineHofmann, Katharina Bettina 06 May 2019 (has links)
No description available.
|
4 |
Statistical Analysis of PAR-CLIP dataGolumbeanu, Monica January 2013 (has links)
From creation to its degradation, the RNA molecule is the action field of many binding proteins with different roles in regulation and RNA metabolism. Since these proteins are involved in a large number of processes, a variety of diseases are related to abnormalities occurring within the binding mechanisms. One of the experimental methods for detecting the binding sites of these proteins is PAR-CLIP built on the next generation sequencing technology. Due to its size and intrinsic noise, PAR-CLIP data analysis requires appropriate pre-processing and thorough statistical analysis. The present work has two main goals. First, to develop a modular pipeline for preprocessing PAR-CLIP data and extracting necessary signals for further analysis. Second, to devise a novel statistical model in order to carry out inference about presence of protein binding sites based on the signals extracted in the pre-processing step.
|
Page generated in 0.0225 seconds