1 |
Familial Breast Cancer: Targeted Therapy in Secondary and Tertiary PreventionKast, Karin, Rhiem, Kerstin 04 August 2020 (has links)
The introduction of an increasing number of individualized molecular targeted therapies into clinical routine mirrors their importance in modern cancer prevention and treatment. Well-known examples for targeted agents are the monoclonal antibody trastuzumab and the selective estrogen receptor modulator tamoxifen. The identification of an unaltered gene in tumor tissue in colon cancer (KRAS) is a predictor for the patient’s response to targeted therapy with a monoclonal antibody (cetuximab). Targeted therapy for hereditary breast and ovarian cancer has become a reality with the approval of olaparib for platin-sensitive late relapsed BRCA-associated ovarian cancer in December 2014. This manuscript reviews the status quo of poly-ADP-ribose polymerase inhibitors (PARPi) in the therapy of breast and ovarian cancer as well as the struggle for carboplatin as a potential standard of care for triple-negative and, in particular, BRCA-associated breast cancer. Details of the mechanism of action with information on tumor development are provided, and an outlook for further relevant research is given. The efficacy of agents against molecular targets together with the identification of an increasing number of cancer-associated genes will open the floodgates to a new era of treatment decision-making based on molecular tumor profiles. Current clinical trials involving patients with BRCA-associated cancer explore the efficacy of the molecular targeted therapeutics platinum and PARPi.
|
2 |
The ssDNA Theory of BRCAness and Genotoxic AgentsPanzarino, Nicholas J. 02 April 2021 (has links)
Cancers that are deficient in BRCA1 or BRCA2 are thought to be hypersensitive to genotoxic agents because they cannot prevent or repair DNA double strand breaks, but observations in patients suggest this dogma may no longer agree with experiment. Here, we propose that single stranded DNA underlies the hypersensitivity of BRCA deficient cancers, and that defects in double strand break repair and prevention do not. Specifically, in BRCA deficient cells, ssDNA gaps developed because replication was not effectively restrained in response to stress. In addition, we observed gaps could be suppressed by either restored fork restraint or by gap filling, both of which conferred therapy resistance in tissue culture and BRCA patient tumors. In contrast, restored double strand break repair and prevention did not confer therapy resistance when gaps were present. Critically, double strand breaks were not detected after therapy when apoptosis was inhibited, supporting a framework in which double strand breaks are not directly induced by genotoxic agents, but instead are created by cell death nucleases and are not fundamental to genotoxic agents. Together, these data indicate that ssDNA replication gaps underlie the BRCA cancer phenotype, "BRCAness," and we propose are fundamental to the mechanism-of-action of genotoxic chemotherapy.
|
Page generated in 0.0144 seconds