• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 336
  • 171
  • 18
  • 18
  • 9
  • 9
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • Tagged with
  • 633
  • 111
  • 73
  • 61
  • 59
  • 52
  • 52
  • 52
  • 49
  • 47
  • 45
  • 43
  • 40
  • 32
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Probing the structure-function relationship of heme c containing bacterial proteins: monoheme cytochromes c and diheme cytochrome c peroxidase

Levin, Benjamin Diamon 22 January 2016 (has links)
Heme containing proteins and their reactivity play a central role in biological systems; they have a vast range of functions including electron transfer, catalysis, and respiration. Cytochromes c and heme c containing proteins have been used widely as model systems to understand how structure and dynamics lead toward function. In this thesis, a variety of biophysical methods are used to investigate two heme c containing model systems to gain insight into how redox potential and reactivity are modulated through changes in the local environment. Mitochondrial cytochrome c undergoes several pH dependent conformational rearrangements that involve different heme ligation and have associated changes in redox potential. Under basic conditions (pH greater than 8), the axial methionine (Met) residue is replaced by one of several nitrogen based ligands, usually a nearby lysine residue, and is coined the "alkaline transition". It is accompanied by a large downward shift in redox potential. The functional utility of this conformational change is not fully understood however it is strongly implicated in the signaling cascade for apoptosis. Bacterial monoheme cytochromes c exhibit similar phenomenological Met-loss behavior as a function of electrode material. In Chapter 2 we utilize Hydrogenobacter thermophilus cytochrome c552 as a model system for the assessment of redox thermodynamics and changes in redox potential associated with the Met-loss form. In Chapter 3 we extend our investigation to homologous cytochromes c. Bacterial cytochrome c peroxidases catalyze the two-electron reduction of hydrogen peroxide to water utilizing cytochrome c as an endogenous electron donor. Chapter 4 describes the first recombinant construct of the diheme Nitrosomonas europaea cytochrome c peroxidase (Ne CCP); a defining family member of constitutively active cytochrome c peroxidases. A variety of biophysical techniques were used to confirm similarity between the recombinant Ne CCP and native enzyme. Chapter 5 extends our investigation to the role of constitutively conserved glutamine and glutamic acid residues within the active site, and two conserved tryptophan residues; the first situated between hemes and the second distal to the active site. In Chapter 6, stopped flow spectroscopy is used to investigate the first intermediates of the Ne CCP catalytic mechanism.
272

Influence of a selected endophyte consortium on salinity responses in Medicago sativa

Keyster, Eden January 2022 (has links)
>Magister Scientiae - MSc / Salinity is one of the major limiting factors to crop production, which consequently contributes to the risk of reduced food security. Among other factors, food security depends on availability of sufficient and nutritious food for humans. Livestock such as cattle and sheep are fed with various plant-based feeds; with Medicago sativa (commonly known as alfalfa or lucerne) being a very important forage/feed crop, so much that it is regarded as the queen of forage crops. However, alfalfa is severely affected by high soil salinity and thus its growth and yield are drastically reduced in soils with high NaCl content. Among the various alfalfa genotypes/varieties examined in this study, Agsalfa was identified as salt tolerant because it performed better under salt treatment compared to Magna601.
273

Localization and Acetylcholinesterase Content of Vagal Efferent Neurons

Hoover, Donald B., Barron, S. E. 01 January 1982 (has links)
The acetylcholinesterase (AChE) content of rat vagal efferent neurons was studied. Retrograde transport of horseradish peroxidase (HRP) by cut vagal axons provided a means for localizing efferent cell bodies; tissue sections were then processed for the simultaneous visualization of HRP and AChE. A dorsal vagal efferent column contained the dorsal motor nucleus of the vagus, as a primary component, and extended caudally into the upper cervical spinal cord. A ventral column contained neurons in the nucleus ambiguus and the surrounding reticular formation. Although most of the vagal efferent neurons stained with moderate to heave intensity for AChE there were some HRP-labeled cells that contained little AChE and a small percentage in which AChE was absent. In spite of the fact that AChE has been demonstrated in certain non-cholinergic neurons, it has also been found in all cholinergic neurons. Therefore, the presence of AChE has been regarded as a necessary (but not sufficient) component for identifying cholinergic neurons. The absence of AChE in a small percentage of the vagal efferent neurons indicates that some preganglionic parasympathetic fibers in the vagus nerve are not cholinergic.
274

Localization of Putative Cholinergic Neurons Innervating the Anteroventral Thalamus

Hoover, Donald B., Baisden, Ronald H. 01 January 1980 (has links)
The brainstem localization of acetylcholinesterase (AChE)-containing neurons projecting to the anteroventral thalamic nucleus (AVN) was studied in rats. The AVN is one of several forebrain regions innervated by the AChE-containing dorsal tegmental pathway described by Shute and Lewis. In the present study, horseradish peroxidase (HRP) was injected into the region of the AVN to determine the brainstem origin of afferent projections. Alternate sections of tissue were stained for HRP or AChE. HRP-labeled neurons were found in the laterodorsal tegmental nucleus (LTN) and the locus coeruleus. Examination of adjacent sections revealed AChE-containing neurons in both of these nuclear regions. Combined HRP/AChE histochemistry demonstrated that transported HRP and AChE were in the same cells. In further experiments, unilateral lesions of the LTN were found to cause a decrease in AChE staining of the ipsilateral AVN. Destruction of the locus coeruleus had no effect. In combination with available evidence, the present findings suggest that cholinergic neurons in the LTN innervate the AVN. © 1980, All rights reserved.
275

Thiol-Norbornene Hydrogels With Tunable Mechanical Properties for Engineered Extracellular Matrices

Nguyen, Han D. 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The extracellular matrix (ECM) governs many cellular processes through biochemical and mechanical cues. Particularly, the effect ECM mechanical properties on cells fate has been well established over the years. Many hydrogel systems have been used to mimic the dynamic stiffening processes occurring in ECM. However, changes in ECM stiffness does not fully recapitulate the mechanics of native ECM, as viscoelasticity is also a major factor contributing to ECM dynamic property. This thesis describes the design and characterization of an enzyme-crosslinked hydrogel system that is not only capable of being stiffened on demand, but also can be tuned to obtain viscoelasticity. The first objective of this thesis was to utilize horseradish peroxidase (HRP) to crosslink thiol-norbornene hydrogel and use mushroom tyrosinase (MT) to create secondary DOPA-dimer crosslinks that stiffened the hydrogel. The cytocompatibility of HRP-mediated thiol-norbornene gelation and the effect of stiffening on cell fate was evaluated. The second objective of this thesis represented the first step towards developing a hydrogel system whose viscoelasticity could be dynamically tuned. Thiol-norbornene hydrogel was designed to yield dynamically adaptable boronic ester bonds via partial enzymatic reaction. Thiol-norborne hydrogel was made to contain hydroxyl phenol as well as boronic acid residues within its network. MT, in this case was used to oxidize the hydroxy phenol moieties into DOPA, which then complexed with boronic acid, created dynamic bonds, introducing viscoelasticity to an initial elastic hydrogel.
276

Study on Oxidase/Peroxidase-based Biosensors with Pentacyanoferrate-bound Polymer / ペンタシアノ鉄錯体ポリマーを用いた酸化酵素/ペルオキシダーゼ型バイオセンサに関する研究

Nieh, Chi-Hua 24 September 2013 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第17895号 / 農博第2018号 / 新制||農||1017(附属図書館) / 学位論文||H25||N4791(農学部図書室) / 30715 / 京都大学大学院農学研究科応用生命科学専攻 / (主査)教授 加納 健司, 教授 三芳 秀人, 教授 小川 順 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
277

Heterologous expression and characterization of lignocellulose degradation enzymes of wood rotting fungus Ceriporiopsis subvermispora, manganese peroxidases and glucuronoyl esterases / 木材腐朽菌Ceriporiopsis subvermisporaが産生する木質分解酵素マンガンペルオキシダーゼとグルクロノイルエステラーゼの異種発現と活性解析 / # ja-Kana

Lin, Meng-I 25 September 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(エネルギー科学) / 甲第21386号 / エネ博第374号 / 新制||エネ||73(附属図書館) / 京都大学大学院エネルギー科学研究科エネルギー基礎科学専攻 / (主査)教授 片平 正人, 教授 森井 孝, 准教授 小瀧 努 / 学位規則第4条第1項該当 / Doctor of Energy Science / Kyoto University / DFAM
278

Cytochrome c peroxidase in trematodes : studies in Schistosoma mansoni and Fasciola hepatica

Campos, Elida Geralda. January 1996 (has links)
No description available.
279

Cholinergic and Non-Cholinergic Septo-Hippocampal Projections: A Double-Label Horseradish Peroxidase-Acetylcholinesterase Study in the Rabbit

Baisden, Ronald H., Woodruff, Michael L., Hoover, Donald B. 02 January 1984 (has links)
The existence of a massive cholinergic projection from cells in the medical septal nucleus (MS) and nucleus of the diagonal band (DB) to the hippocampal formation has been recognized for some time. However, the actual percentages of cholinergic and non-cholinergic neurons in the MS and DB which project to the hippocampus have not been reported. A procedure which combines horseradish peroxidase (HRP) and acetylcholinesterase (AChE) histochemistry in the same tissue was used to determine these percentages in the rabbit. Less than 50% of the neurons in the MS and DB which were labeled with reaction product following an HRP injection into the dorsal hippocampus also stained for AChE. Moreover, 70% of all neurons containing HRP reaction product were located in the DB, but neurons in the DB could not be differentiated from those in the MS on the basis of size or morphology. These data are taken to indicate that much of the MS-DB hippocampal projection is not cholinergic. Substance P is suggested as another possible transmitter within this anatomical system.
280

Applications of Biocatalysts for Sustainable Oxidation of Phenolic Pollutants: A Review

Salehi, S., Abdollahi, K., Panahi, R., Rahmanian, Nejat, Shakeri, M., Mokhtarani, B. 09 September 2021 (has links)
Yes / Phenol and its derivatives are hazardous, teratogenic and mutagenic, and have gained significant attention in recent years due to their high toxicity even at low concentrations. Phenolic compounds appear in petroleum refinery wastewater from several sources, such as the neutralized spent caustic waste streams, the tank water drain, the desalter effluent and the production unit. Therefore, effective treatments of such wastewaters are crucial. Conventional techniques used to treat these wastewaters pose several drawbacks, such as incomplete or low efficient removal of phenols. Recently, biocatalysts have attracted much attention for the sustainable and effective removal of toxic chemicals like phenols from wastewaters. The advantages of biocatalytic processes over the conventional treatment methods are their ability to operate over a wide range of operating conditions, low consumption of oxidants, simpler process control, and no delays or shock loading effects associated with the start-up/shutdown of the plant. Among different biocatalysts, oxidoreductases (i.e., tyrosinase, laccase and horseradish peroxidase) are known as green catalysts with massive potentialities to sustainably tackle phenolic contaminants of high concerns. Such enzymes mainly catalyze the o-hydroxylation of a broad spectrum of environmentally related contaminants into their corresponding o-diphenols. This review covers the latest advancement regarding the exploitation of these enzymes for sustainable oxidation of phenolic compounds in wastewater, and suggests a way forward.

Page generated in 0.0301 seconds