• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 8
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Méthylation de l'ADN et identité cellulaire : fonctions de la méthylation de l'ADN dans les lignages gamétiques et hématopoïétiques chez la souris / DNA methylation and cellular identity : function of DNA methylation in gametic and hematopoietic lineages in mouse

Bender, Ambre 23 November 2017 (has links)
La méthylation de l’ADN est la marque épigénétique la plus connue. Elle consiste en l’ajout d’un groupement méthyle au niveau de la cytosine, produisant la 5-méthyl-cystosine (5mC). Cette réaction chimique est catalysée par des ADN méthyltransférases : DNMT1, DNMT3A et DNMT3B. Peu de choses sont connues concernant les changements de 5mC au cours des lignages cellulaires dans l’embryon et comment cette marque contribue à l’établissement ou au maintien de l’identité cellulaire. Nous avons cherché à mieux comprendre ces mécanismes en étudiant la 5mC dans deux lignages cellulaires : les cellules primordiales germinales (PGCs) et les cellules souches hématopoïétiques (HSCs). Nous avons généré les premiers méthylomes de ces cellules au cours de leur développement chez la souris. Chez les PGCs, nous avons mis en évidence l’existence de deux phases de reprogrammation de la 5mC. Une première phase entre E9,5 et E13,5, où le génome des PGCs se déméthyle et une phase de reméthylation entre E14,5 et E17,5, chez les gamètes mâles uniquement. Néanmoins, certaines régions, dont notamment les éléments transposables sont résistants à la vague de déméthylation. L’utilisation de souris conditionnellement, nous a permis de mettre en évidence l’implication des protéines DNMT1 et UHRF2 dans le maintien de la 5mC au niveau de ces séquences. Concernant les HSCs, nous avons mis en évidence qu’elles acquièrent un profil de 5mC qui leur est propre lors de deux phases. La première a lieu dès l’apparition des HSCs dans l’organisme tandis que l’acquisition de la signature hématopoïétique définitive se déroule à l’âge adulte dans la moelle osseuse. L’utilisation de souris conditionnelles, nous a permis de mettre en exergue l’implication de DNMT3A et DNMT3B dans la mise en place de ces profils, avec un rôle prépondérant de DNMT3B lors de la phase d’acquisition précoce et de DNMT3A lors du verrouillage de leur profil de 5mC. / The methylation of DNA is a well-known epigenetic mark. It consists in adding a methyl group to a cytosine producing the 5-methylcytosine (5mC). This is catalysed by the DNA methyltransferase (DNMT) family: DNMT1, DNMT3A and DNMT3B. Little is known about the changes in DNA methylation that follow lineage decisions in the embryo and how these contribute, establish or maintain cellular identities. We are addressing these questions using as a model the specification of mouse primordial germ cells (PGCs) and mouse hematopoietic stem cells (HSCs) in the mouse embryo. We generate the first genome-wide maps of 5mC during their development. These maps highlight two waves of DNA methylation in PGCs. The first one takes place between E9,5 and E13,5, where the genome demethylates while the second one corresponds to a remethylation phase only in male PGCs between E14,5 and E17,5. Nevertheless, some regions, notably the transposable elements, are resistant to this demethylation wave. We demonstrate the implication of DNMT1 and UHRF2 in maintaining the 5mC on these regions using transgenic mice presenting specific deletion in PGCs. In HSCs, the 5mC maps highlight two wave of DNA methylation. The first one correlates with the first appearance of the HSCs in early embryos while the second one corresponds to their migration to the bone marrow and seems to act as a definitive lock for their hematopoietic identity. Using transgenic mice presenting specific deletions in HSCs, we prove the implication of DNMT3A and DNMT3B in hematopoietic stem cells, with a major role in locking HSC identity of DNMT3B during the first wave and a DNMT3A during the second one respectively.
2

Značení a izolace primordiálních gonocytů jeseterů / Identification and isolation of primordial gonocytes in sturgeon

DVOŘÁK, Matěj January 2014 (has links)
Primordial gonocytes (PGCs) in some animals, including fish arise after fertilization in extragonadal region from maternally inherited germline cytoplasm, and migrate to the future gonads region during embryogenesis, where differentiate into gametes. PGCs formation and migration patterns have been studied in several species models, and it is known that these patterns differ from each other. Sturgeons belong to class ray-finned fishes(Actinoptergii), in which the sturgeon phylogenetic position is an out-group to teleost fishes, the sturgeon development pattern is more similar to amphibians than teleost fishes. In this study, we demonstrate an injection technique for sturgeon PGCs visualization by GFP nos1 3'UTR mRNA. We found that the Sterlet(A. ruthenus) PGCs are specified in the vegetative pole of the embryo. Subsequently, we reported the PGCs migration route. The arisen PGCs actively migrated on the yolky cell mass, yolky extension, and after that passively moved to gonadal ridge. This study provides evidence that the PGCsare specified by maternally inherited germplasm, located in the vegetative part of the embryo. Sturgeon PGCs specification was similar to that of anuras, but the migration pattern resembled that of teleost. Furthermore, we successfully isolated PGCs to next needed studies.
3

Principles for the regulation of multiple developmental pathways by a versatile transcriptional factor, BLIMP1 / 転写制御因子BLIMP1による多様な発生経路における転写調節の原理

Mitani, Tadahiro 23 January 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第20804号 / 医博第4304号 / 新制||医||1025(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 河本 宏, 教授 松田 文彦, 教授 柳田 素子 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
4

The susceptibility of primordial germ cells to malignant transformation and isolation and characterization of members of a new gene family differentially expressed in invasive and non-invasive immortalized male germ cells / Die Potenz der Primordialen Keimzellen zur malignen Transformation und Isolierung und Charakterisierung von Mitgliedern einer neuen Genfamilie, die in invasiven immortalisierten Keimzellen überexprimiert sind

Ahmed, Manal Bayomi Mahmoud 29 January 2002 (has links)
No description available.
5

Cellular locomotion and adhesion in the context of different substrate properties

Baronsky, Thilo 10 June 2016 (has links)
No description available.
6

The semi-absolute anabelian geometry of geometrically pro-p arithmetic fundamental groups of associated low-dimensional configuration spaces / 付随する低次元配置空間の副p幾何的数論的基本群の半絶対遠アーベル幾何学

Higashiyama, Kazumi 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第21544号 / 理博第4451号 / 新制||理||1639(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)准教授 星 裕一郎, 教授 向井 茂, 教授 望月 新一 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
7

Epigenética da reprogramação em células germinativas embrionárias caninas / Epigenetics of reprogramming in canine embryonic germ cells

Aline Fernanda de Souza 16 February 2017 (has links)
As células germinativas primordiais (CGPs) são as precursoras dos gametas, capazes de gerar um novo indivíduo os quais transmitirão os materiais genéticos para as futuras gerações. Normalmente, a linha germinal de mamífero é determinada por fatores genéticos e epigenéticos que possuem funções essenciais para guiar na direção e desenvolvimento das CGPs, bem como das células germinativas embrionárias (CGEs). A reprogramação epigenética é fundamental para a regulação do genoma durante o desenvolvimento das células germinativas responsáveis por originar a linhagem gametogênica nos mamíferos. A metilação e desmetilação em CGPs são um evento único, essencial para apagar a memória epigenética e também prevenir transmissões de epimutações para a próxima geração. Assim, o completo entendimento das vias e mecanismos para a migração inicial e diferenciação destas células em CGEs podem ser importantes para identificar e corrigir falhas possíveis nesses processos, o que será importante, no futuro, para o desenvolvimento e desempenho reprodutivo. A maioria dos estudos com CGPs e CGEs é realizado em camundongos, porém nem sempre esta espécie torna-se o melhor modelo de estudo quando se quer transpor esses conhecimentos a humanos. O cão doméstico (Canis lúpus familiaris) apresenta-se como um modelo ideal para o estudo do desenvolvimento em mamíferos, pois possui inúmeras similaridades com a bioquímica, fisiologia e genética. Deste modo, torna-se interessante expandir os estudos sobre as CGPs e CGEs na espécie canina, a fim de mostrar a importância de diferentes modelos que se assemelham a seres humanos. Portanto, objetiva-se, nesta proposta, identificar qual é a dinâmica de marcadores pluripotentes, germinativos e epigenéticos que são importantes para o desenvolvimento das CGPs e CGEs caninas. Para tal procedimento, essa pesquisa foi dividida em duas fases: a primeira, consiste no processo in vivo, desde o desenvolvimento inicial do embrião até a completa formação da crista gônadal. Análises de RTq-PCR e imunofluorescência para marcadores pluripotentes POU5F1 (OCT4) e NANOG, germinativos DDX4 (VASA), DAZL e DPPA3 (STELLA) e epigenéticos 5mC, 5hmC, H3K27me3 e H3K9me2 foram realizados para criar um perfil de genes que são importantes para o desenvolvimento das CGPs caninas. Prosseguiu-se para a segunda fase in vitro, que incide na derivação e caracterização das CGEs caninas. Ensaios de Fosfatase Alcalina, imunofluorescência para os marcadores: pluripotente POU5F1 (OCT4), germinativos DDX4 (VASA), DAZL e DPPA3 (STELLA), mesodérmico THY-1 (CD90) e epigenéticos 5mC, 5hmC, H3K27me3 e H3K9me2, RT-qPCR para os genes NANOG e DDX4 e formação de teratoma foram efetivados para comprovar a linhagem de células CGEs. Como resultado in vivo, percebe-se que diferentes padrões de marcações e genes foram expressos nas CGPs, comprovando que a espécie canina se assemelha mais com os humanos do que com os camundongos. Os resultados in vitro mostraram que foi possível derivar as células CGEs e que estas conseguem reter sua pluripotencialidade e que diminuem a expressão dos genes germinativos. Porém, essas células tendem a se diferenciar em outros tecidos somáticos, mesmo com a adição de suplementos, fato também notado em CGEs humanas. / Primordial germ cells (PGCs) are known as the only cells capable of generating a new individual, they originate the gametes which then will transmit genetic material to future generations. Normally, the mammalian germ line is determined by genetic and epigenetic factors that have essential functions to guide the direction and development of PGCs as well as embryonic germ cells (EGCs). Epigenetic reprogramming is fundamental for the regulation of the genome during the development of the germ cells responsible for originating the gametogenic lineage in mammals. Methylation and demethylation in PGCs is a unique event, essential for erasing epigenetic memory and also preventing transmissions of epimutations to the next generation. Thus, the understanding of the patterns of differentiation of PGCs in EGCs can be important in identifying and correcting possible failures in these processes, which will be important in the future for development and reproductive performance. Most of the studies with PGCs in EGCs are carried out in mice, but this species is not always the best model of study when transposing this knowledge to humans. In canines, no study has ever been reported on canine PGCs and maybe the Canine species has become interesting as a new animal model for studies. It is known that the study material of human embryos are scarce samples and difficult to obtain, so it is necessary to use other animal models, such as the Canids, which also resemble humans. Dogs were the first fundamental models for the development of bone marrow transplantation in humans, but also made valuable contributions to the development of therapies for cardiovascular and orthopedic diseases. Then, it has become interesting to expand the studies on PGCs in the canine species in order to show the importance of different models that might resemble humans. Therefore, we had how proposal identify which were pluripotent, germinative and epigenetic markers that are important for the development of PGCs and canine EGCs. It research was divided into two phases: the first consists of the in vivo process, from the initial development of the embryo to the complete formation of the gonadal ridge. We analyzed through the techniques of real-time PCR (RT-qPCR) and immunofluorescence for pluripotent markers POU5F1 (OCT4) and NANOG, germline DDX4 (VASA), DAZL and DPPA3 (STELLA) and epigenetic 5mC, 5hmC, H3K27me3 and H3K9me2 were performed to create a profile of genes that are important for the development of canine PGCs. We proceeded to the second in vitro phase, which focuses on the derivation and characterization of canine EGCs. Alkaline Phosphatase (AP), immunofluorescence for the markers: pluripotent POU5F1 (OCT4), germinative DDX4 (VASA), DAZL and DPPA3 (STELLA), mesodermal THY-1 (CD90) and epigenetic 5mC, 5hmC, H3K27me3 and H3K9me2. We also analyzed RT-qPCR for NANOG and DDX4 genes and teratoma formation were performed to prove the EGCs cell lineage. As a result in vivo, different marking patterns and genes had been expressed in CGPs, proving that the canine species is more similar to humans than to mice. The in vitro results showed that it was possible to derive the EGCs and that they are able to retain their pluripotency and decrease the expression of the germinative genes. However, these cells continue to differentiate into other somatic tissues, even with the addition of supplements, a fact also noted in human CGEs.
8

Epigenética da reprogramação em células germinativas embrionárias caninas / Epigenetics of reprogramming in canine embryonic germ cells

Souza, Aline Fernanda de 16 February 2017 (has links)
As células germinativas primordiais (CGPs) são as precursoras dos gametas, capazes de gerar um novo indivíduo os quais transmitirão os materiais genéticos para as futuras gerações. Normalmente, a linha germinal de mamífero é determinada por fatores genéticos e epigenéticos que possuem funções essenciais para guiar na direção e desenvolvimento das CGPs, bem como das células germinativas embrionárias (CGEs). A reprogramação epigenética é fundamental para a regulação do genoma durante o desenvolvimento das células germinativas responsáveis por originar a linhagem gametogênica nos mamíferos. A metilação e desmetilação em CGPs são um evento único, essencial para apagar a memória epigenética e também prevenir transmissões de epimutações para a próxima geração. Assim, o completo entendimento das vias e mecanismos para a migração inicial e diferenciação destas células em CGEs podem ser importantes para identificar e corrigir falhas possíveis nesses processos, o que será importante, no futuro, para o desenvolvimento e desempenho reprodutivo. A maioria dos estudos com CGPs e CGEs é realizado em camundongos, porém nem sempre esta espécie torna-se o melhor modelo de estudo quando se quer transpor esses conhecimentos a humanos. O cão doméstico (Canis lúpus familiaris) apresenta-se como um modelo ideal para o estudo do desenvolvimento em mamíferos, pois possui inúmeras similaridades com a bioquímica, fisiologia e genética. Deste modo, torna-se interessante expandir os estudos sobre as CGPs e CGEs na espécie canina, a fim de mostrar a importância de diferentes modelos que se assemelham a seres humanos. Portanto, objetiva-se, nesta proposta, identificar qual é a dinâmica de marcadores pluripotentes, germinativos e epigenéticos que são importantes para o desenvolvimento das CGPs e CGEs caninas. Para tal procedimento, essa pesquisa foi dividida em duas fases: a primeira, consiste no processo in vivo, desde o desenvolvimento inicial do embrião até a completa formação da crista gônadal. Análises de RTq-PCR e imunofluorescência para marcadores pluripotentes POU5F1 (OCT4) e NANOG, germinativos DDX4 (VASA), DAZL e DPPA3 (STELLA) e epigenéticos 5mC, 5hmC, H3K27me3 e H3K9me2 foram realizados para criar um perfil de genes que são importantes para o desenvolvimento das CGPs caninas. Prosseguiu-se para a segunda fase in vitro, que incide na derivação e caracterização das CGEs caninas. Ensaios de Fosfatase Alcalina, imunofluorescência para os marcadores: pluripotente POU5F1 (OCT4), germinativos DDX4 (VASA), DAZL e DPPA3 (STELLA), mesodérmico THY-1 (CD90) e epigenéticos 5mC, 5hmC, H3K27me3 e H3K9me2, RT-qPCR para os genes NANOG e DDX4 e formação de teratoma foram efetivados para comprovar a linhagem de células CGEs. Como resultado in vivo, percebe-se que diferentes padrões de marcações e genes foram expressos nas CGPs, comprovando que a espécie canina se assemelha mais com os humanos do que com os camundongos. Os resultados in vitro mostraram que foi possível derivar as células CGEs e que estas conseguem reter sua pluripotencialidade e que diminuem a expressão dos genes germinativos. Porém, essas células tendem a se diferenciar em outros tecidos somáticos, mesmo com a adição de suplementos, fato também notado em CGEs humanas. / Primordial germ cells (PGCs) are known as the only cells capable of generating a new individual, they originate the gametes which then will transmit genetic material to future generations. Normally, the mammalian germ line is determined by genetic and epigenetic factors that have essential functions to guide the direction and development of PGCs as well as embryonic germ cells (EGCs). Epigenetic reprogramming is fundamental for the regulation of the genome during the development of the germ cells responsible for originating the gametogenic lineage in mammals. Methylation and demethylation in PGCs is a unique event, essential for erasing epigenetic memory and also preventing transmissions of epimutations to the next generation. Thus, the understanding of the patterns of differentiation of PGCs in EGCs can be important in identifying and correcting possible failures in these processes, which will be important in the future for development and reproductive performance. Most of the studies with PGCs in EGCs are carried out in mice, but this species is not always the best model of study when transposing this knowledge to humans. In canines, no study has ever been reported on canine PGCs and maybe the Canine species has become interesting as a new animal model for studies. It is known that the study material of human embryos are scarce samples and difficult to obtain, so it is necessary to use other animal models, such as the Canids, which also resemble humans. Dogs were the first fundamental models for the development of bone marrow transplantation in humans, but also made valuable contributions to the development of therapies for cardiovascular and orthopedic diseases. Then, it has become interesting to expand the studies on PGCs in the canine species in order to show the importance of different models that might resemble humans. Therefore, we had how proposal identify which were pluripotent, germinative and epigenetic markers that are important for the development of PGCs and canine EGCs. It research was divided into two phases: the first consists of the in vivo process, from the initial development of the embryo to the complete formation of the gonadal ridge. We analyzed through the techniques of real-time PCR (RT-qPCR) and immunofluorescence for pluripotent markers POU5F1 (OCT4) and NANOG, germline DDX4 (VASA), DAZL and DPPA3 (STELLA) and epigenetic 5mC, 5hmC, H3K27me3 and H3K9me2 were performed to create a profile of genes that are important for the development of canine PGCs. We proceeded to the second in vitro phase, which focuses on the derivation and characterization of canine EGCs. Alkaline Phosphatase (AP), immunofluorescence for the markers: pluripotent POU5F1 (OCT4), germinative DDX4 (VASA), DAZL and DPPA3 (STELLA), mesodermal THY-1 (CD90) and epigenetic 5mC, 5hmC, H3K27me3 and H3K9me2. We also analyzed RT-qPCR for NANOG and DDX4 genes and teratoma formation were performed to prove the EGCs cell lineage. As a result in vivo, different marking patterns and genes had been expressed in CGPs, proving that the canine species is more similar to humans than to mice. The in vitro results showed that it was possible to derive the EGCs and that they are able to retain their pluripotency and decrease the expression of the germinative genes. However, these cells continue to differentiate into other somatic tissues, even with the addition of supplements, a fact also noted in human CGEs.

Page generated in 0.0308 seconds