1 |
Necessary condition for forward progression in ballistic walkingUno, Yoji, Kagawa, Takahiro 12 1900 (has links)
No description available.
|
2 |
Catenaries in Viscous FluidChakrabarti, Brato 26 June 2015 (has links)
Slender structures in fluid flow exhibit a variety of rich behaviors. Here we study the equilibrium shapes of perfectly flexible strings that are moving with a uniform velocity and axial flow in viscous fluid. The string is acted upon by local, anisotropic, linear drag forces and a uniform body force. Generically, the configurations of the string are planar, and we provide analytical expressions for the equilibrium shapes of the string as a first order five parameter dynamical system for the tangential angle of the body ($theta$). Phase portraits in the angle-curvature ($theta,partial_s theta$) plane are generated, that can be shown to be $pi$ periodic after appropriate scaling and reflection operations. The rich parameter space allows for different kinds of phase portraits that give rise to a variety of curve geometries. Some of these solutions are unstable due to the presence of compressive stresses. Special cases of the problem include sedimenting filaments, dynamic catenaries, and towed strings. We also discuss equilibrium configurations of towed cables and other relevant problems with fixed boundary conditions. Special cases of the boundary value problem involve towing of neutrally buoyant cables and strings with pure axial flow between two fixed points. / Master of Science
|
3 |
Estudo dos retratos de fase dos campos de vetores polinomiais quadráticos com integral primeira racional de grau 2 / On the phase portraits of quadratic polynomial vector fields having a rational first integral of degree 2Peruzzi, Daniela 18 June 2009 (has links)
Um dos principais problemas na teoria qualitativa das equações diferenciais em dimensão dois é apresentar, para uma dada família de sistemas diferenciais, uma classificação topológica dos retratos de fase de todos os sistemas dessa família. A proposta deste trabalho é estudar a técnica utilizada na classificação dos retratos de fase globais de sistemas diferenciais polinomiais da forma \'dx SUP dt\' = P(x,y) \'dy SUP dt = Q(x,y) onde P e Q são polinômios nas variáveis x e y e o máximo entre os graus de P e Q é 2. Para esse fim optamos pelo estudo da referência de Cairó e Llibre [5]. Na presente referência os autores obtém a classificação de todos os retratos de fase globais dos sistemas diferenciais polinomiais que possuem uma integral primeira racional, H, de grau 2. Esse estudo foi dividido em duas etapas. Na primeira, caracterizamos a função H através de seus coeficientes. Na segunda, encontramos todos os retratos de fase globais no disco de Poincaré. Para tais sistemas, existem exatamente 18 retratos de fase no disco de Poincaré, exceto pela reversão do sentido de todas as órbitas ou equivalência topológica / One of the main problems in the qualitative theory of 2-dimensional differential equations is, for a concrete family of differential systems, to describe a topological classification of the phase portraits for all the systems in this family. The purpose of this work is to study a technique used in the classification of global phase portraits of the planar polynomial diferential systems or simply quadratic systems of the form \'dx SUP. dt\' = P(x,y) \'dy SUP. dt\' = Q(x,y) where P and Q are real polynomials in x and y the maximum degree of P and Q is 2. Our basic reference is the paper of Cairó and Llibre [5]. In that work the authors give the classification of all global phase portraits of the planar quadratic differential systems having a rational first integral H of degree 2. Our work is divided in two parts. In the first part, we characterize the first integral H through its coeficients. In the second one, we describe all global phase portraits in the Poincaré disk. For such systems, there are exactly 18 different phase portraits in the Poincaré disk, up to a reversal of sense of all orbits or topological equivalence
|
4 |
Estudo dos retratos de fase dos campos de vetores polinomiais quadráticos com integral primeira racional de grau 2 / On the phase portraits of quadratic polynomial vector fields having a rational first integral of degree 2Daniela Peruzzi 18 June 2009 (has links)
Um dos principais problemas na teoria qualitativa das equações diferenciais em dimensão dois é apresentar, para uma dada família de sistemas diferenciais, uma classificação topológica dos retratos de fase de todos os sistemas dessa família. A proposta deste trabalho é estudar a técnica utilizada na classificação dos retratos de fase globais de sistemas diferenciais polinomiais da forma \'dx SUP dt\' = P(x,y) \'dy SUP dt = Q(x,y) onde P e Q são polinômios nas variáveis x e y e o máximo entre os graus de P e Q é 2. Para esse fim optamos pelo estudo da referência de Cairó e Llibre [5]. Na presente referência os autores obtém a classificação de todos os retratos de fase globais dos sistemas diferenciais polinomiais que possuem uma integral primeira racional, H, de grau 2. Esse estudo foi dividido em duas etapas. Na primeira, caracterizamos a função H através de seus coeficientes. Na segunda, encontramos todos os retratos de fase globais no disco de Poincaré. Para tais sistemas, existem exatamente 18 retratos de fase no disco de Poincaré, exceto pela reversão do sentido de todas as órbitas ou equivalência topológica / One of the main problems in the qualitative theory of 2-dimensional differential equations is, for a concrete family of differential systems, to describe a topological classification of the phase portraits for all the systems in this family. The purpose of this work is to study a technique used in the classification of global phase portraits of the planar polynomial diferential systems or simply quadratic systems of the form \'dx SUP. dt\' = P(x,y) \'dy SUP. dt\' = Q(x,y) where P and Q are real polynomials in x and y the maximum degree of P and Q is 2. Our basic reference is the paper of Cairó and Llibre [5]. In that work the authors give the classification of all global phase portraits of the planar quadratic differential systems having a rational first integral H of degree 2. Our work is divided in two parts. In the first part, we characterize the first integral H through its coeficients. In the second one, we describe all global phase portraits in the Poincaré disk. For such systems, there are exactly 18 different phase portraits in the Poincaré disk, up to a reversal of sense of all orbits or topological equivalence
|
5 |
Periodická okrajová úloha v modelování kmitů nelineárních oscilátorů / Periodic boundary value problem in mathematical models of nonlinear oscillatorsKyjovský, Adam January 2020 (has links)
This master's thesis deals with qualitative analysis of nonlinear differential equations of second order. For autonomous equations some basic notions of Hamiltonian systems (mainly construction of phase portrait) are presented. For non-autonomous equations the method of lower and upper functions for periodic boundary value problem is used. These notions are then applied to a model of mechanical oscillator, a question of existence of solutions to autonomous and non-autonomous nonlinear differential equations is studied.
|
6 |
Исследование стохастической модели иммуно-опухолевой динамики в условиях химиотерапии : магистерская диссертация / Modeling and analysis of a stochastic model of tumor-immune dynamics under ChemotherapyЧухарева, А. А., Chukhareva, A. A. January 2022 (has links)
В данной магистерской диссертации рассматривается нелинейная модель взаимодействия иммунных и опухолевых клеток под воздействием химиотерапии. Данная модель является модификацией уже известной модели Кузнецова, в которой отсутствует лечение. В работе был проведен бифуркационный анализ в зависимости от коэффициента интенсивности лечения. В ходе анализа было выявлено три характерных состояния системы: "активная опухоль", "спящая опухоль" и "нулевая опухоль". Для равновесных и автоколебательных режимов найдены параметрические зоны сосуществования и определены сепаратисты, разделяющие бассейны соответствующих аттракторов. Найдены оценки параметра интенсивности химиотерапии, при котором возможно как удержание системы в режиме «спящей̆» опухоли, так и ее полное подавление. Для стохастической̆ модели описаны сценарии результатов воздействия случайных возмущений на режимы динамического взаимодействия иммунных и опухолевых клеток. Исследованы условия, при которых индуцированные шумом переходы играют позитивную роль, приводя к резкому сокращению опухолевых клеток. / We study a two-dimensional model of the dynamical interaction of immune and tumor cells under chemotherapy. This model is a modification of the well-known model which was studied by Kuznetsov but without treatment. A bifurcation analysis of the deterministic model was carried out depending on the parameter of the intensity of chemotherapy. It has been shown that the system admits three characteristic states: "active", "dormant", and "zero" tumor. For this multistable system, a description of the equilibrium and self-oscillating modes is given, and the basins of coexisting attractors are determined. We have found estimates of the doses of chemotherapy to keep tumor in the "dormant" regime or to suppress it completely.
For the stochastic model, parametric estimates of the probability of transitions between the "active" and "dormant" or "zero" tumor modes were obtained, as well as the conditions under which random disturbances play a positive role, leading to a sharp reduction in the population of tumor cells.
|
7 |
Behaviour of Objects in Structured Light Fields and Low Pressures / Behaviour of Objects in Structured Light Fields and Low PressuresFlajšmanová, Jana January 2021 (has links)
Studium chování opticky zachycených částic nám umožňuje porozumět základním fyzikálním jevům plynoucím z interakce světla a hmoty. Předkládaná práce podává vysvětlení zesílení tažné síly působící na opticky svázané částice ve strukturovaném světelném poli, tzv. tažném svazku. Ukazujeme, že pohyb dvou opticky svázaných objektů v tažném svazku je silně závislý na jejich vzájemné vzdálenosti a prostorové orientaci, což rozšiřuje možnosti manipulace hmoty pomocí světla. Následně se práce zaměřuje na levitaci opticky zachycených částic ve vakuu. Představujeme novou metodologii na charakterizaci vlastností slabě nelinearního Duffingova oscilátoru reprezentovaného opticky levitující částicí. Metoda je založena na průměrování trajektorií s určitou počáteční pozicí ve fázovém prostoru sestávajícím z polohy a rychlosti částice a poskytuje informaci o parametrech oscilátoru přímo ze zaznamenaného pohybu. Náš inovativní postup je srovnán s běžně užívanou metodou založenou na analýze spektrální hustoty polohy částice a za využití numerických simulací ukazujeme její použitelnost i v nízkých tlacích, kde nelinearita hraje významnou roli.
|
8 |
A geometria de algumas famílias tridimensionais de sistemas diferenciais quadráticos no plano / The geometry of some tridimensional families of planar quadratic differential systemsRezende, Alex Carlucci 22 September 2014 (has links)
Sistemas diferenciais quadráticos planares estão presentes em muitas áreas da matemática aplicada. Embora mais de mil artigos tenham sido publicados sobre os sistemas quadráticos ainda resta muito a se conhecer sobre esses sistemas. Problemas clássicos, e em particular o XVI problema de Hilbert, estão ainda em aberto para essa família. Um dos objetivos dos pesquisadores contemporâneos é obter a classificação topológica completa dos sistemas quadráticos. Devido ao grande número de parâmetros (essa família possui doze parâmetros e, aplicando transformações afins e reescala do tempo, reduzimos esse número a cinco, sendo ainda um número grande para se trabalhar) usualmente subclasses são consideradas nas investigações realizadas. Quando características específicas são levadas em consideração, o número de parâmetros é reduzido e o estudo se torna possível. Nesta tese estudamos principalmente duas subfamílias de sistemas quadráticos: a primeira possuindo um nó triplo semielemental e a segunda possuindo uma selanó semi elemental finita e uma selanó semielemental infinita formada pela colisão de uma sela infinita com um nó infinito. Os diagramas de bifurcação para ambas as famílias são tridimensionais. A família tendo um nó triplo gera 28 retratos de fase topologicamente distintos, enquanto o fecho da família tendo as selasnós dentro do espaço de bifurcação de sua forma normal gera 417. Polinômios invariantes são usados para construir os conjuntos de bifurcação e os retratos de fase topologicamente distintos são representados no disco de Poincaré. Os conjuntos de bifurcação são a união de superfícies algébricas e superfícies cuja presença foi detectada numericamente. Ainda nesta tese, apresentamos todos os retratos de fase de um sistema diferencial conhecido como modelo do tipo SIS (sistema suscetívelinfectadosuscetível, muito comum na matemática aplicada) e a classificação dos sistemas quadráticos possuindo hipérboles invariantes. Ambos sistemas foram investigados usando de polinômios invariantes afins. / Planar quadratic differential systems occur in many areas of applied mathematics. Although more than one thousand papers have been written on these systems, a complete understanding of this family is still missing. Classical problems, and in particular Hilberts 16th problem, are still open for this family. One of the goals of recent researchers is the topological classification of quadratic systems. As this attempt is not possible in the whole class due to the large number of parameters (twelve, but, after affine transformations and time rescaling, we arrive at families with five parameters, which is still a large number), many subclasses are considered and studied. Specific characteristics are taken into account and this implies a decrease in the number of parameters, which makes possible the study. In this thesis we mainly study two subfamilies of quadratic systems: the first one possessing a finite semielemental triple node and the second one possessing a finite semielemental saddlenode and an infinite semielemental saddlenode formed by the collision of an infinite saddle with an infinite node. The bifurcation diagram for both families are tridimensional. The family having the triple node yields 28 topologically distinct phase portraits, whereas the closure of the family having the saddlenodes within the bifurcation space of its normal form yields 417. Invariant polynomials are used to construct the bifurcation sets and the phase portraits are represented on the Poincaré disk. The bifurcation sets are the union of algebraic surfaces and surfaces whose presence was detected numerically. Moreover, we also present the analysis of a differential system known as SIS model (this kind of systems are easily found in applied mathematics) and the complete classification of quadratic systems possessing invariant hyperbolas.
|
9 |
Proximity-to-Separation Based Energy Function Control Strategy for Power System StabilityChan, Teck-Wai January 2003 (has links)
The issue of angle instability has been widely discussed in the power engineering literature. Many control techniques have been proposed to provide the complementary synchronizing and damping torques through generators and/or network connected power apparatus such as FACTs, braking resistors and DC links. The synchronizing torque component keeps all generators in synchronism while damping torque reduces oscillations and returns the power system to its pre-fault operating condition. One of the main factors limiting the transfer capacity of the electrical transmission network is the separation of the power system at weak links which can be understood by analogy with a large spring-mass system. However, this weak-links related problem is not dealt with in existing control designs because it is non-trivial during transient period to determine credible weak links in a large power system which may consist of hundreds of strong and weak links. The difficulty of identifying weak links has limited the performance of existing controls when it comes to the synchronization of generators and damping of oscillations. Such circumstances also restrict the operation of power systems close to its transient stability limits. These considerations have led to the primary research question in this thesis, "To what extent can the synchronization of generators and damping of oscillations be maximized to fully extend the transient stability limits of power systems and to improve the transfer capacity of the network?" With the recent advances in power electronics technology, the extension of transfer capacity is becoming more readily achievable. Complementary to the use of power electronics technology to improve transfer capacity, this research develops an improved control strategy by examining the dynamics of the modes of separation associated with the strong and weak links of the reduced transmission network. The theoretical framework of the control strategy is based on Energy Decomposition and Unstable Equilibrium Points. This thesis recognizes that under extreme loadings of the transmission network containing strong and weak links, weak-links are most likely to dictate the transient stability limits of the power system. We conclude that in order to fully extend the transient stability limits of power system while maximizing the value of control resources, it is crucial for the control strategy to aim its control effort at the energy component that is most likely to cause a separation. The improvement in the synchronization amongst generators remains the most important step in the improvement of the transfer capacity of the power system network.
|
10 |
A geometria de algumas famílias tridimensionais de sistemas diferenciais quadráticos no plano / The geometry of some tridimensional families of planar quadratic differential systemsAlex Carlucci Rezende 22 September 2014 (has links)
Sistemas diferenciais quadráticos planares estão presentes em muitas áreas da matemática aplicada. Embora mais de mil artigos tenham sido publicados sobre os sistemas quadráticos ainda resta muito a se conhecer sobre esses sistemas. Problemas clássicos, e em particular o XVI problema de Hilbert, estão ainda em aberto para essa família. Um dos objetivos dos pesquisadores contemporâneos é obter a classificação topológica completa dos sistemas quadráticos. Devido ao grande número de parâmetros (essa família possui doze parâmetros e, aplicando transformações afins e reescala do tempo, reduzimos esse número a cinco, sendo ainda um número grande para se trabalhar) usualmente subclasses são consideradas nas investigações realizadas. Quando características específicas são levadas em consideração, o número de parâmetros é reduzido e o estudo se torna possível. Nesta tese estudamos principalmente duas subfamílias de sistemas quadráticos: a primeira possuindo um nó triplo semielemental e a segunda possuindo uma selanó semi elemental finita e uma selanó semielemental infinita formada pela colisão de uma sela infinita com um nó infinito. Os diagramas de bifurcação para ambas as famílias são tridimensionais. A família tendo um nó triplo gera 28 retratos de fase topologicamente distintos, enquanto o fecho da família tendo as selasnós dentro do espaço de bifurcação de sua forma normal gera 417. Polinômios invariantes são usados para construir os conjuntos de bifurcação e os retratos de fase topologicamente distintos são representados no disco de Poincaré. Os conjuntos de bifurcação são a união de superfícies algébricas e superfícies cuja presença foi detectada numericamente. Ainda nesta tese, apresentamos todos os retratos de fase de um sistema diferencial conhecido como modelo do tipo SIS (sistema suscetívelinfectadosuscetível, muito comum na matemática aplicada) e a classificação dos sistemas quadráticos possuindo hipérboles invariantes. Ambos sistemas foram investigados usando de polinômios invariantes afins. / Planar quadratic differential systems occur in many areas of applied mathematics. Although more than one thousand papers have been written on these systems, a complete understanding of this family is still missing. Classical problems, and in particular Hilberts 16th problem, are still open for this family. One of the goals of recent researchers is the topological classification of quadratic systems. As this attempt is not possible in the whole class due to the large number of parameters (twelve, but, after affine transformations and time rescaling, we arrive at families with five parameters, which is still a large number), many subclasses are considered and studied. Specific characteristics are taken into account and this implies a decrease in the number of parameters, which makes possible the study. In this thesis we mainly study two subfamilies of quadratic systems: the first one possessing a finite semielemental triple node and the second one possessing a finite semielemental saddlenode and an infinite semielemental saddlenode formed by the collision of an infinite saddle with an infinite node. The bifurcation diagram for both families are tridimensional. The family having the triple node yields 28 topologically distinct phase portraits, whereas the closure of the family having the saddlenodes within the bifurcation space of its normal form yields 417. Invariant polynomials are used to construct the bifurcation sets and the phase portraits are represented on the Poincaré disk. The bifurcation sets are the union of algebraic surfaces and surfaces whose presence was detected numerically. Moreover, we also present the analysis of a differential system known as SIS model (this kind of systems are easily found in applied mathematics) and the complete classification of quadratic systems possessing invariant hyperbolas.
|
Page generated in 0.0292 seconds