• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 241
  • 103
  • 33
  • 26
  • 22
  • 20
  • 18
  • 12
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 597
  • 96
  • 94
  • 94
  • 77
  • 76
  • 76
  • 75
  • 52
  • 48
  • 40
  • 40
  • 39
  • 39
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Automated procedures for orientation of digital images

Morgado, Ana M. de O. January 1996 (has links)
No description available.
62

Digital image based surface modelling

Eberhardt, Joerg January 1998 (has links)
No description available.
63

Using linear features for absolute and exterior orientation

Park, David W. G. January 1999 (has links)
No description available.
64

The use of remotely sensed LiDAR and multispectral imagery for modeling eastern redcedar biomass within North Eastern Kansas

Bryant, Johnny January 1900 (has links)
Master of Arts / Department of Geography / Kevin P. Price / Due in large part to changes in land management practices, eastern redcedar (Juniperus virginiana L.), a native Kansas conifer, is rapidly invading onto valuable rangelands. The suppression of fire and increase of intensive grazing, combined with the rapid growth rate, high reproductive output, and dispersal ability of the species have allowed it to dramatically expand beyond its original range. Based on its abundance and invasive nature there is a growing interest in harvesting this species for use as a biofuel. For economic planning purposes, density and biomass quantities for the trees are needed. Three methods are explored for mapping eastern redcedar and quantifying its biomass in Riley County, Kansas. First a comparison of plot-regression versus individual tree based techniques is conducted to determine the optimal approach for characterizing redcedar tree canopy using LiDAR (Light Detection and Ranging). Second a hybrid approach is utilized to characterize redcedar canopy biomass using LiDAR and high-resolution multispectral imagery. Finally, to explore alternative methods of characterizing the three-dimensional structure of redcedar canopy a comparison of “Structure from Motion” photogrammetric techniques and LiDAR is conducted. These methods showed promising results and proved to be useful in the forestry, range management, and bioenergy industries for better understanding the potential of invasive redcedar as a biofuel resource.
65

Digital outcrop mapping of a reservoir-scale incised valley fill, Sego Sandstone, Book Cliffs, Utah

Fey, Matthew F. 02 June 2009 (has links)
Outcrop analog studies have long been used to define subsurface correlation strategies and improve predictions of reservoir heterogeneities that can complicate production behavior. Recent advancements in geographic information software, 3D geologic modeling techniques, and survey equipment have the potential to revolutionize outcrop analog studies. A workflow is developed to create digital outcrop models using a reflectorless total station, a digital camera, Erdas Photogrammetry Module™, and Gocad™ to document complex stratal variations across kilometers-long outcrops. Combining outcrop digital elevation models with orthorectified photographs and detailed sedimentologic logs provides a framework for static 3D reservoir analog models. Developed methodologies are demonstrated by mapping rock variations and stratal geometries within several kilometers-long, sub-parallel exposures of the Lower Sego Sandstone in San Arroyo Canyon, Book Cliffs, Utah. The digital outcrop model of the Lower Sego Sandstone documents complex bedding geometry and facies distribution within two sharp-based sandstone layers. A mapping of allostratigraphic surfaces through the digital outcrop model provided a framework in which to analyze facies variations. These surfaces included: 1) Basal erosion surfaces of these layers interpreted to have formed by tidal erosion of the sea floor during shoreline regression; 2) a high relief erosion surface within the upper layer interpreted to have formed during lowstand fluvial incision; and 3) top contacts of layers defined by abrupt fining to marine shale, which are interpreted to record marine ravinement during transgression. Facies variations within the lower layer include low sinuosity distributary channel deposits incised into highly marine bioturbated sandstone. Deposits above the high-relief erosion surface within the upper layer are a classic valley fill succession, which processes upward from lowstand fluvial channel deposits, to heterolithic estuarine deposits, and finally to sandy landward-dipping beds of an estuarine mouth shoal deposit. The digital outcrop model allows surfaces and facies observation to be mapped within a structured 3D coordinate system to define reservoir analog models.
66

Digital outcrop mapping of a reservoir-scale incised valley fill, Sego Sandstone, Book Cliffs, Utah

Fey, Matthew F. 02 June 2009 (has links)
Outcrop analog studies have long been used to define subsurface correlation strategies and improve predictions of reservoir heterogeneities that can complicate production behavior. Recent advancements in geographic information software, 3D geologic modeling techniques, and survey equipment have the potential to revolutionize outcrop analog studies. A workflow is developed to create digital outcrop models using a reflectorless total station, a digital camera, Erdas Photogrammetry Module™, and Gocad™ to document complex stratal variations across kilometers-long outcrops. Combining outcrop digital elevation models with orthorectified photographs and detailed sedimentologic logs provides a framework for static 3D reservoir analog models. Developed methodologies are demonstrated by mapping rock variations and stratal geometries within several kilometers-long, sub-parallel exposures of the Lower Sego Sandstone in San Arroyo Canyon, Book Cliffs, Utah. The digital outcrop model of the Lower Sego Sandstone documents complex bedding geometry and facies distribution within two sharp-based sandstone layers. A mapping of allostratigraphic surfaces through the digital outcrop model provided a framework in which to analyze facies variations. These surfaces included: 1) Basal erosion surfaces of these layers interpreted to have formed by tidal erosion of the sea floor during shoreline regression; 2) a high relief erosion surface within the upper layer interpreted to have formed during lowstand fluvial incision; and 3) top contacts of layers defined by abrupt fining to marine shale, which are interpreted to record marine ravinement during transgression. Facies variations within the lower layer include low sinuosity distributary channel deposits incised into highly marine bioturbated sandstone. Deposits above the high-relief erosion surface within the upper layer are a classic valley fill succession, which processes upward from lowstand fluvial channel deposits, to heterolithic estuarine deposits, and finally to sandy landward-dipping beds of an estuarine mouth shoal deposit. The digital outcrop model allows surfaces and facies observation to be mapped within a structured 3D coordinate system to define reservoir analog models.
67

Measurement properties of the sagittal craniocervical posture photogrammetry

Gadotti, Inae Caroline Unknown Date
No description available.
68

Triangulation methods in engineering measurement

Kyle, Stephen Alexander January 1988 (has links)
Industrial surveying and photogrammetry are being increasingly applied to the measurement of engineering objects which have typical dimensions in the range 2-100 metres. Both techniques are examples of the principle of triangulation. By applying photocrammetric concepts to surveying methods and vice-versa, a general approach is established which has a number of advantages. In particular. alternative strategies for constructing and analysing measurement networks are developed. These should help to strengthen the geometry and simplify the analysis. The primary results concern the use of non-levelled theodolites, which have applications on board floating objects, and three new suggestions for controlling and computing relative orientations in photogrammetry. These involve reciprocal observations with theodolites. the photographing of linear scales defined by three target points and employing cameras which have been levelled. As a secondary result, some consideration Is given to automation, and instrument design. It is suggested that polarimetry could be successfully applied to improve the transfer of orientation in confined situations, such as in mining. In addition, the potential use of electronic cameras as photo-theodolites is discussed.
69

Measurement properties of the sagittal craniocervical posture photogrammetry

Gadotti, Inae Caroline 11 1900 (has links)
Commonly in clinical settings, the patients posture is visually evaluated by the clinician using anatomical landmark references. However, this measurement is subjective and not quantifiable. Photogrammetry to assess posture was thought to be a possible good clinical alternative to the other methods because it is non-invasive, quantifiable, and less expensive. However, more tests were needed to determine its validity. This study tested the reliability and the validity of five angles measuring craniocervical posture using photogrammetry. Radiographs and photographs of the craniocervical posture of 39 healthy-female subjects were taken in a standardized sagittal standing position. Markers were placed on the back of the subjects neck and ear. A second photograph and radiograph was taken 1 week later using 21 of the 39 subjects to test reliability. The angles were analyzed using Alcimage software. Intraclass-correlation coefficient and standard error of measurement was used to test the reliability. Concurrent validity was tested using Pearson correlation and regression analysis. Discriminant analysis was used to test the discriminant validity. Sensitivity/specificity and predicted values were also calculated. The results showed that photogrammetry ICC values were good to excellent when assessed by 2 raters (ICC=0.89-0.99). The posture of the subjects was reproducible when tested using radiographs (ICC=0.89-0.98). One rater was reliable in reattaching the markers (ICC=0.71-0.91) and precise in locating the reference spinous processes (87.8%). Craniovertebral angle (CVA) appeared to be valid in measuring the position of the head in relation to the cervical spine (r=0.84) and to be able discriminate subjects with aligned posture, slight forward head posture (SFHP), and forward head posture (FHP) assessed by 1 rater (84.6% correctly classified). Cervical inclination angle (CIA) appears to be valid in discriminating subjects with aligned and FHP (86% and 88% respectively) but moderate to predict the cervical spine inclination. The cervical lordosis angles were not able to discriminate postures and predict the cervical lordosis. CVA and CIA were able to detect postural differences through the sensitivity/specificity and predicted values analysis. This study supports the validation of CVA and CIA to assess craniocervical posture which may improve the ability of the clinician to detect and quantify craniocervical postural alterations. / Rehabilitation Science
70

Correction of radially asymmetric lens distortion with a closed form solution and inverse function

De Villiers, Jason Peter. January 2008 (has links)
Thesis (M.Eng.(Electronic Engineering))--University of Pretoria, 2007. / Summaries in Afrikaans and English. Includes bibliographical references (leaves 75-78).

Page generated in 0.0406 seconds