181 |
Řešení intenzity osvětlení scény metodou Mapování fotonů / Scene Ilumination by Photon Mapping MethodHübner, Lukáš January 2012 (has links)
This thesis deals with the estimation of global illumination of a~scene. Global illumination is expressed as a~physical simulation in connection with illumination methods used in current computer graphics. In the practical part there is expressed an implementation of global illumination estimation using photon maps.
|
182 |
Analysis of the Intrinsic Visible V–Mid-infrared L Colors of Galaxies at Redshifts z < 2January 2019 (has links)
abstract: Ultraviolet and optical light from stars is reddened and attenuated by interstellar dust, where different sightlines across a galaxy suffer varying amounts of extinction. Tamura et al. (2009) developed an approximate method to correct for dust extinction, dubbed the “βV method,” by comparing the observed to an empirical estimate of the intrinsic flux ratio of visible and ∼3.5 μm emission. Moving beyond that empirical approach, through extensive modeling, I calibrated the βV -method for various filters spanning the visible through near infrared wavelength range, for a wide variety of simple stellar populations (SSP) and composite stellar populations (CSP). Combining Starburst99 and BC03 models, I built spectral energy distributions of SSP and CSP for various realistic star formation histories, while taking metallicity evolution into account. I convolved various 0.44–1.65 μm filter throughput curves with each model spectral energy distribution (SED) to obtain intrinsic flux ratios, βλ,0. To validate the modeling, I analyzed spatially resolved maps for the observed V- and g-band to 3.6 μm flux ratios and the inferred dust-extinction values AV for a sample of 257 nearby galaxies. Flux ratio maps are constructed using point-spread function-matched mosaics of Sloan Digitial Sky Survey g- and r-band images and Spitzer/InfraRed Array Camera 3.6μm mosaics, with all of the pixels contaminated by foreground stars or background objects masked out. Dust-extinction maps for each galaxy were created by applying the βV -method. The typical 1σ scatter in βV around the average, both within a galaxy and in each morphological type bin, is ∼20%. Combined, these result in a ∼0.4 mag scatter in AV. βV becomes insensitive to small-scale variations in stellar populations once resolution elements subtend an area larger than 10 times that of a typical giant molecular cloud. I find noticeably redder V−3.6 μm colors in the center of star-forming galaxies and galaxies with a weak AGN. The derived intrinsic V −3.6 μm colors for each Hubble type are generally consistent with the modeling. Finally, I discuss the applicability of the βV dust-correction method to more distant galaxies, for which large samples of well-matched Hubble Space Telescope rest-frame visible and James Webb Space Telescope rest-frame ∼3.5μm images will become available in the near future. / Dissertation/Thesis / Doctoral Dissertation Astrophysics 2019
|
183 |
Stellar Population Synthesis of Star-Forming Clumps in Galaxy Pairs and Non-Interacting Spiral GalaxiesZaragoza-Cardiel, Javier, Smith, Beverly J., Rosado, Margarita, Beckman, John E., Bitsakis, Theodoros, Camps-Fariña, Artemi, Font, Joan, Cox, Isaiah S. 01 February 2018 (has links)
We have identified 1027 star-forming complexes in a sample of 46 galaxies from the Spirals, Bridges, and Tails (SB&T) sample of interacting galaxies, and 693 star-forming complexes in a sample of 38 non-interacting spiral (NIS) galaxies in 8 μm observations from the Spitzer Infrared Array Camera. We have used archival multi-wavelength UV-to IR observations to fit the observed spectral energy distribution of our clumps with the Code Investigating GALaxy Emission using a double exponentially declined star formation history. We derive the star formation rates (SFRs), stellar masses, ages and fractions of the most recent burst, dust attenuation, and fractional emission due to an active galactic nucleus for these clumps. The resolved star formation main sequence holds on 2.5 kpc scales, although it does not hold on 1 kpc scales. We analyzed the relation between SFR, stellar mass, and age of the recent burst in the SB&T and NIS samples, and we found that the SFR per stellar mass is higher in the SB&T galaxies, and the clumps are younger in the galaxy pairs. We analyzed the SFR radial profile and found that the SFR is enhanced through the disk and in the tidal features relative to normal spirals.
|
184 |
Properties of Near-Infrared Type Ia Supernovae Light CurvesFaerber, Timothy January 2020 (has links)
As a result of the standardizability of SNe Ia light curves over a wide range of photometric bands, they are used as standard candles to accurately measure distances in the cosmos up to z ≈ 1 [22]. As dust extinction is smaller in the NIR than in the optical [21] there is less dispersion seen in the peak brightnesses of SNe Ia, making them truly standard candles. We use SNPY to fit light curves for 192 SNe Ia. The mean of all Hubble residuals of our sample is ≈ 0.101 mag with a standard deviation of ≈ 0.234 mag. After applying an original set of cuts, the mean of 173 Hubble residuals reduces to ≈ 0.080 mag with a standard deviation of 0.203 mag. We next estimate host galaxy stellar masses of 175 SNe. From our sample we detect a 0.039 ± 0.026 mag (1−2σ) mass-step. For reasons outlined in section 4.1.1 and 4.1.2 respectively, we increase our sBV cut to sBV > 0.8 and decrease our extinction cut to E(B −V ) ≤ 0.2 mag to see the mass step disappear entirely (0.004 ± 0.034 mag). Fast-declining SNe occur with preference in high-mass galaxies, possibly pointing to an intrinsic contribution to this mass step [22]. As NIR data is seen to significantly reduce the 3−4σ [14] mass-step detected with optical data, it is concluded that extinction likely plays a large role in the mass-step, as proposed in Brout & Scolnic 2020 [2]. / <p>Presentation given over zoom due to the COVID-19 crisis.</p>
|
185 |
Activity patterns of central amygdala neurons in a mouse model of narcolepsyBegovic, Jelena 11 June 2019 (has links)
Narcolepsy is a disorder of unstable wake and sleep states caused by the lack of orexin neurons which degenerate most likely as a consequence of an autoimmune process. The state instability of narcolepsy includes rapid eye movement (REM) sleep intruding into wake in the form of dream-like hallucinations and cataplexy, muscle paralysis (atonia) much like occurs in REM sleep. In mice lacking orexin peptides, cataplexy is also observed with similar presentation as in humans of muscle paralysis during wakefulness which is often triggered by positive emotions. Prior research showed that the activation of the central amygdala is sufficient to promote cataplexy in a mouse model of narcolepsy. The central amygdala (CeA) contains a variety of neuronal types, and we hypothesize that γ-aminobutyric acid (GABA)-ergic neurons expressing the oxytocin receptor (OTR) mediate cataplexy as these neurons project to a known REM sleep atonia-regulating region, the ventrolateral periaqueductal gray (vlPAG)/lateral pontine tegmentum (LPT), and, as oxytocin (OT) sensitive neurons in the amygdala, likely participate in emotional processing and social behavior. In this study, we used fiber photometry to investigate the behavior of these neurons in response to social and rewarding stimuli, during emotion-triggered cataplexy, and across arousal states in an effort to define their potential role in emotion-triggered cataplexy. Initial recordings were conducted at too low an excitation light power to stimulate the green fluorescent calcium indicator, GCaMP6s, but were useful in optimizing MATLAB analysis and behavioral tests later done at higher LED power. The second series of recordings with higher excitation light power and better signal to noise ratio, showed increased activity in response to social interaction and reward, prior to REM transitions, and decreased activity during cataplexy confirming patterns seen in initial recordings. In recordings with higher excitation light, these responses appear to occur before interaction with stimulus mice or reward stimulus. In the future, additional recordings with a higher signal to noise ratio will be needed to confirm these results. In conclusion, responses of CeA-OTR neurons to social and rewarding stimuli, cataplexy, and at REM transitions are in support of a possible role of these neurons in emotion-triggered cataplexy which can be tested using additional methods, such as optogenetics.
|
186 |
Observations, Thermochemical Calculations, and Modeling of Exoplanetary AtmospheresBlecic, Jasmina 01 January 2015 (has links)
This dissertation as a whole aims to provide the means to better understand hot-Jupiter planets through observing, performing thermochemical calculations, and modeling their atmospheres. We used Spitzer multi-wavelength secondary-eclipse observations to characterize planetary atmospheres. We chose targets with high signal-to-noise ratios, as their deep eclipses allow us to detect signatures of spectral features and assess planetary atmospheric structure and composition with greater certainty. Chapter 1 gives a short introduction. Chapter 2 presents the Spitzer secondary-eclipse analysis and atmospheric characterization of WASP-14b. The decrease in flux when a planet passes behind its host star reveals the planet dayside thermal emission, which, in turn, tells us about the atmospheric temperature and pressure profiles and molecular abundances. WASP-14b is a highly irradiated, transiting hot Jupiter. By applying a Bayesian approach in the atmospheric analysis, we found an absence of thermal inversion contrary to theoretical predictions. Chapter 3 describes the infrared observations of WASP-43b's Spitzer secondary eclipses, data analysis, and atmospheric characterization. WASP-43b is one of the closest-orbiting hot Jupiters, orbiting one of the coolest stars with a hot Jupiter. This configuration provided one of the strongest signal-to-noise ratios. The atmospheric analysis ruled out a strong thermal inversion in the dayside atmosphere of WASP-43b and put a nominal upper limit on the day-night energy redistribution. Chapter 4 presents an open-source Thermochemical Equilibrium Abundances (TEA) code and its application to several hot-Jupiter temperature and pressure models. TEA calculates the abundances of gaseous molecular species using the Gibbs free-energy minimization method within an iterative Lagrangian optimization scheme. The thermochemical equilibrium abundances obtained with TEA can be used to initialize atmospheric models of any planetary atmosphere. The code is written in Python, in a modular fashion, and it is available to the community via http://github.com/dzesmin/TEA. Chapter 5 presents my contributions to an open-source Bayesian Atmospheric Radiative Transfer (BART) code, and its application to WASP-43b. BART characterizes planetary atmospheres based on the observed spectroscopic information. It initializes a planetary atmospheric model, performs radiative-transfer calculations to produce models of planetary spectra, and using a statistical module compares models with observations. We describe the implementation of the initialization routines, the atmospheric profile generator, the eclipse module, the best-fit routines, and the contribution function module. We also present a comprehensive atmospheric analysis of all WASP-43b secondary-eclipse data obtained from the space- and ground-based observations using BART.
|
187 |
Detecting And Characterizing Exoplanets: The Gj 436 And Hd 149026 SystemsStevenson, Kevin 01 January 2012 (has links)
This dissertation investigates two stellar systems known to contain extrasolar planets. It is comprised of five chapters that are readily divided into three independent but related analyses. Chapter 1 reports on the analysis of low signal-to-noise secondary-eclipse observations of the Neptune-sized exoplanet GJ 436b using the Spitzer Space Telescope in multiple infrared channels. The measured wavelength-dependent eclipse depths provide constraints on the planet’s dayside atmospheric composition and thermal profile. The analysis indicates that GJ 436b’s atmosphere is abundant in carbon monoxide and deficient in methane relative to thermochemical equilibrium models for the predicted hydrogen-dominated atmosphere. Chapter 2 discusses the techniques used to analyze GJ 436b, introduces the Least Asymmetry centering method and compares its effectiveness to two existing techniques, and describes the functions used to model Spitzer’s position- and time-dependent systematics. Additionally, it includes best-fit parameters with uncertainties, histograms of the free parameters, and correlation plots between free parameters. Chapter 3 reports on the analysis of eleven HD 149026b secondary-eclipse observations at five Spitzer wavelengths plus three primary-transit observations at 8.0 µm. Chemical-equilibrium models find no indication of a temperature inversion in the dayside atmosphere of HD 149026b. The best-fit model favors large amounts of CO and CO2 , moderate heat redistribution (f = 0.5), and a strongly eniii hanced metallicity. These analyses use BiLinearly-Interpolated Subpixel Sensitivity (BLISS) mapping and parameter orthogonalization. The former is a new technique to model two position-dependent systematics, intrapixel variability and pixelation. The latter is a technique that accelerates the convergence of Markov chains that employ the Metropolis random walk sampler. Chapter 4 reports on the detection of GJ 436c, a 0.65 ± 0.04 R⊕ exoplanet transiting a nearby M-dwarf star with a period of 1.365862 ± 8×10−6 days. It also presents evidence for a similarly sized exoplanet candidate (currently labeled UCF-1.02) orbiting the same star with an undetermined period. Assuming an Earth-like density of 5.515 g/cm3 , GJ 436c has a predicted mass of 0.28 Earth-masses (M⊕, 2.6 Mars-masses) and a surface gravity of 0.65 g (where g is the gravity on Earth). Its weak gravitational field and close proximity to its host star imply that GJ 436c is unlikely to have retained its original atmosphere; however, a transient atmosphere is possible if recent impacts or tidal heating were to supply volatiles to the surface. Chapter 5 presents numerical simulations of the GJ 436 system using the Mercury N-body integrator and detailed calculations used to constrain the atmospheric composition of the sub-Earth-sized planet GJ 436c. The simulations find a ∼35-year periodic trend in the osculating elements wherein GJ 436c’s eccentricity varies between 0 and 0.21, its peak-to-trough inclination amplitude is 3.2◦ , and transit-timing variations range from ±200 to ±3 minutes.
|
188 |
Performance of the BRITE Prototype Photometer Under Real Sky ConditionsBode, Willem January 2011 (has links)
Wide-field photometry is prone to various degradations, such as atmospheric ex- tinction, varying point spread functions, and aliasing in addition to classical noise sources such as photon, sky background, readout, and thermal noise. While space- borne observations do not suer from atmospheric eects, varying star images over a large sensor and aliasing may seriously impede good results. A measure of the achievable precision of ground-based dierential photometry with the prototype photometer for the BRITE satellite mission is reported, using real sky observa- tions. The data were obtained with the photometer attached to a paramount tracking platform, using the Image Reduction and Analysis Facility Software (IRAF) image reduction and analysis methods as well as the author's own Matlab Code. Special emphasis is placed on the analysis of varying apertures for vary- ing point spread functions, which shows that the accuracy can be improved by taking into account the statistics for each star instead of using a xed aperture. In addition a function is dened, which describes the expected error in terms of instrumental magnitudes, taking into account Poisson distributed noise and mag- nitude independent noise, mainly aliasing. This function is then t to observed data in a two-dimensional least squares sense, providing a calculated aliasing error of 7 millimagnitudes. This function is furthermore rewritten in terms of the stan- dard magnitude B. A maximum magnitude can then be determined for a certain precision, which shows that the Bright Target Explorer (BRITE) can reach a pho- tometric error of 1 millimagnitude for stars with magnitude B < 3:5, assuming the worst case duty cycle of 15 minutes. / <p>Validerat; 20110211 (anonymous)</p>
|
189 |
Analysis of the Halo Globular Cluster M30 and its Variable StarsSmitka, Michael Thomas 05 July 2007 (has links)
No description available.
|
190 |
Extrasolar Planet Detection and Characterization With the KELT-North Transit SurveyBeatty, Thomas G. 30 December 2014 (has links)
No description available.
|
Page generated in 0.0253 seconds