• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 381
  • 65
  • 46
  • 45
  • 23
  • 15
  • 13
  • 11
  • 10
  • 7
  • 3
  • Tagged with
  • 755
  • 315
  • 226
  • 156
  • 143
  • 139
  • 103
  • 78
  • 77
  • 76
  • 74
  • 70
  • 69
  • 68
  • 65
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

Light Management for Silicon and Perovskite Tandem Solar Cells

January 2019 (has links)
abstract: The emergence of perovskite and practical efficiency limit to silicon solar cells has opened door for perovskite and silicon based tandems with the possibility to achieve >30% efficiency. However, there are material and optical challenges that have to be overcome for the success of these tandems. In this work the aim is to understand and improve the light management issues in silicon and perovskite based tandems through comprehensive optical modeling and simulation of current state of the art tandems and by characterizing the optical properties of new top and bottom cell materials. Moreover, to propose practical solutions to mitigate some of the optical losses. Highest efficiency single-junction silicon and bottom silicon sub-cell in silicon based tandems employ monocrystalline silicon wafer textured with random pyramids. Therefore, the light trapping performance of random pyramids in silicon solar cells is established. An accurate three-dimensional height map of random pyramids is captured and ray-traced to record the angular distribution of light inside the wafer which shows random pyramids trap light as well as Lambertian scatterer. Second, the problem of front-surface reflectance common to all modules, planar solar cells and to silicon and perovskite based tandems is dealt. A nano-imprint lithography procedure is developed to fabricate polydimethylsiloxane (PDMS) scattering layer carrying random pyramids that effectively reduces the reflectance. Results show it increased the efficiency of planar semi-transparent perovskite solar cell by 10.6% relative. Next a detailed assessment of light-management in practical two-terminal perovskite/silicon and perovskite/perovskite tandems is performed to quantify reflectance, parasitic and light-trapping losses. For this first a methodology based on spectroscopic ellipsometry is developed to characterize new absorber materials employed in tandems. Characterized materials include wide-bandgap (CH3NH3I3, CsyFA1-yPb(BrxI1-x)3) and low-bandgap (Cs0.05FA0.5MA0.45(Pb0.5Sn0.5)I3) perovskites and wide-bandgap CdTe alloys (CdZnSeTe). Using this information rigorous optical modeling of two-terminal perovskite/silicon and perovskite/perovskite tandems with varying light management schemes is performed. Thus providing a guideline for further development. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2019
352

Piezoelectric ZnO Nanowires as a Tunable Interface Material for Opto-Electronic Applications

Santhanakrishna, Anand Kumar 01 April 2019 (has links)
Organic electronic devices are sustainable alternatives to the conventional electronics, due to their advantages of low cost, mechanical flexibility and wide range of applications. With the myriad list of organic materials available today, the opportunities to imagine new innovative devices are immense. Organic electronic devices such as OLEDs (organic light emitting diode), OPVs (Organic photovoltaics) and OFETs (organic field effect transistors) are among the leading device categories. Although OLED’s have been a huge commercial success, other categories are not lagging. Radical thinking is necessary to improve on the current performances of these devices. One such thinking is to combine the versatile ZnO (Zinc Oxide) material to organic semiconductors. This can be achieved by exploiting the dual nature of ZnO’s semiconducting and piezoelectric property. Many devices have used ZnO in combination with organic semiconductors for applications ranging from sensors, photovoltaics, OFET’s, memory and many others. The goal of the work is to incorporate the piezoelectric nature of hydrothermally grown ZnO nanowires for Opto-electronic applications. Although the initial research work was done on incorporating the piezo effect of bulk grown ZnO nanowires in improving the efficiency of an OPV, we discovered a unique memory effect in this device by incorporating ZnO nanowires in an inverted organic photovoltaic architecture. The device switched between a rectifying response in dark to resistive behavior under illumination with a finite transition time and was reversible. Since then we decided to explore few of the opto-electronic applications of this technology. The synthesis and characterization of crystalline ZnO nanowires, nanoforest and planar ZnO nanofilm are reported along with the application of these ZnO nanostructures in optoelectronic devices. Noncentro symmetry of crystalline ZnO nanostructures makes it an excellent candidate to be used as piezo functional material and these nanostructures are characterized using electrochemical cell containing ZnO electrode as the working electrode. ZnO nanostructures like nanowires, nanoforest and planar nanofilm are similarly characterized for piezo property using electrochemical technique. Different devices require distinguishing physical and electrical properties of ZnO nanostructures, hence morphology, effect of pre-strain, surface area, surface coverage and thickness of these nanostructures were evaluated for its piezoresponse. It is shown that it was possible to obtain similar piezoresponse among different ZnO nanostructures in addition to taking advantage of the structural benefits among various categories of nanostructures as per requirement. The presented research can be used as the proof-of-the-concept that ZnO nanostructures can be designed and fabricated with a prestrain to adjust the piezo response of the material under external forces. Therefore, the structure with the prestrain can be employed in various electronic and optical devices where the piezo voltage can be used for adjusting the energy band bending at an interface.
353

Application of vertically aligned arrays of metal-oxide nanowires in heterojunction photovoltaics

Ladan, Muhammad Bello January 2020 (has links)
Philosophiae Doctor - PhD / The commercial need to improve the performance of low-cost organic solar cells has led to the idea for this research. The study discusses the synthesis of one dimensional TiO2 and ZnO nanowire arrays synthesised using a hydrothermal autoclave method and their application in bulk heterojunction inverted organic solar cells. Previous literature has shown that the precise manipulation, positioning and assembly of 1D nanostructures remain one of the greatest challenges in the field of nanotechnology, with much of the difficulty arising primarily from the lack of size and scale of the materials as well as the inability to visualise the nanostructures. In particular, one dimensional metal-oxides such as TiO2, ZnO and Fe2O3 have emerged as attractive alternatives to traditional semiconductor structures such as Si and GaAs as they are simple and inexpensive to manufacture, with research showing that application of ZnO nano-cones yield efficiencies of 8.4%, which is very attractive given the scope that exists in optimising the metal-oxide architecture. Much is still to be learned from the precise structural features of these materials and their influence on device performance. In this regard, this work largely focuses on this aspect of metal-oxide nanowires prior their application in organic solar cells.
354

Mitigation of soiling losses in solar collectors: removal of surface-adhered dust particles using an electrodynamic screen

Sayyah, Arash 28 October 2015 (has links)
Particulate contamination of the optical surfaces of solar collectors, often called "soiling", can have a significant deteriorating impact on energy yield due to the absorption and scattering of incident light. Soiling has more destructive effect on concentrated solar systems than on flat-plate photovoltaic panels, as the former are incapable of converting scattered sunlight. The first part of this thesis deals with the soiling losses of flat-plate photovoltaic (PV), concentrated solar power (CSP), and concentrated photovoltaic (CPV) systems in operation in several regions of the world. Influential parameters in dust accumulation losses, as well as different cleaning mechanisms in pursuit of restoring the efficiency of soiled systems, have been thoroughly investigated. In lieu of the most commonly-practiced manual cleaning method of using high-pressure water jets, the concept of automatic dust removal using the electrostatic forces of electrodynamic screen (EDS) technology is in a developmental stage and on its way toward commercialization. This thesis provides comprehensive analytical solutions for the electric potential and electric field distribution in EDS devices having different configurations. Numerical simulations developed using finite element analysis (FEA) software have corroborated the analytical solutions which can easily be embedded into software programs for particle trajectory simulations while also providing flexibility and generality in the study on the effect of different parameters of the EDS on the electric field and ensuing dust-removal performance. Evaluation and comparison of different repelling and attracting forces exerted on dust particles is of utmost importance to a detailed analysis of EDS performance in dust removal. Hence, the balance of electrostatic and adhesion forces, including van der Waals and capillary forces, have received significant attention in this dissertation. Furthermore, different numerical analyses have been conducted to investigate the potential causes of observed failures of EDS prototypes that functioned well in a laboratory environment but failed after outdoor exposure. Experimental studies form the last two chapters of this dissertation. Different tests have been conducted on an EDS sample integrated with a PV cell to restore the efficiency of the cell after dust deposition. In order to evaluate the performance of the EDS in dust-particle removal, we have studied the particle size distribution on the EDS surface after each dust deposition and EDS cleaning cycle using a custom-built dust-deposition analyzer. Furthermore, we have pursued several experiments to examine how the geometric and operational EDS parameters affect particle charge via charge-to-mass-ratio measurements.
355

Radiative Passive Cooling for Concentrated Photovoltaics

Ze Wang (8088254) 06 December 2019 (has links)
<p>Photovoltaic (PV) cells have become an increasingly ubiquitous technology; however, concentrating photovoltaics (CPV), despite their higher theoretical efficiencies and lower costs, have seen much more limited adoption. Recent literature indicates that thermal management is a key challenge in CPV systems. If not addressed, it can negatively impact efficiency and reliability (lifetime). Traditional cooling methods for CPV use heat sinks, forced air convection or liquid cooling, which can induce an extremely large convection area, or parasite electric consumption. In addition, the moving parts in cooling system usually result in a shorter life time and higher expense for maintenance. Therefore, there is a need for an improved cooling technology that enables significant improvement in CPV systems. As a passive and compact cooling mechanism, radiative cooling utilizes the transparency window of the atmosphere in the long wavelength infrared. It enables direct heat exchange between objects on earth’s surface with outer space. Since radiated power is proportional to the difference of the fourth powers of the temperatures of PV and ambient, significantly greater cooling powers can be realized at high temperatures, compared with convection and conduction. These qualities make radiative cooling a promising method for thermal management of CPV. In this work, experiments show that a temperature drop of 36 degree C have been achieved by radiative cooling, which results in an increase of 0.8 V for open-circuit voltage of GaSb solar cell. The corresponding simulations also reveal the physics behind radiative cooling and give a thorough analysis of the cooling performance.</p>
356

Byggnadsintegrerade Solceller : Applicering till ett flerbostadshus / Building integrated solar cells : Application to a multi-family dwelling

Lantz, Dennis, Stigeborn, Pontus January 2012 (has links)
Denna rapport presenterar det examensarbete som har gjorts i samarbete med företaget SMÅA AB. Syftet med arbetet är att öka kunskapen, för företaget, om solceller ur en teknisk och ekonomisk synpunkt då man väljer att integrera dessa i byggnadsskalet. Viktiga frågor som har tagits upp innefattar lönsamhet vid användning av solceller, möjligheter att integrera solceller samt hur tekniken ser ut idag och hur den kan utvecklas i framtiden. Dessa kunskaper har sedan applicerats på ett planerat flerbostadshus under resultatet. I lösningsförslaget har solceller blivit integrerade i tak och balkongräcken, där olika typer av solceller används baserad på dess respektive egenskaper som är bäst anpassade för ändamålet. Ämnesområden som berörs är energi, solceller, byggnadsintegrering samt ekonomi. Rapporten är baserad på fakta presenterad av yrkesmän, forskare och säljare som har goda kunskaper inom området. Lönsamheten, som är en central fråga, diskuteras under analys och slutsatser har sedan kunnat dras där man kan se att hur valda lösningar fungerar i dagsläget, om det är lönsamt samt hur det skulle kunna se ut. / This report presents the thesis that has been done in collaboration with SMÅA Corporation. The underlying aim is to increase knowledge, for the company, on photovoltaic cells from a technical and economic analysis when integrated into the building envelope. Important issues raised include profitability with the use of photovoltaic systems, ways to integrate them and also where the technology stands today and how it may evolve in the future. This knowledge has then been applied in a planned multi-family dwelling in the outcome. In the proposed solution, Photovoltaic systems have been integrated on the roof and balcony railings, where different types of solar cells are used based on their respective properties that are best suited for the purpose. Subject areas covered throughout the report include energy, photovoltaics, building integration and economy. The report is based on the facts presented by industry professionals, researchers and salesmen who are knowledgeable in the field. Profitability, which is a central issue, is discussed during the analysis and conclusions have been drawn where one can see whether the chosen solutions work in the current situation, if it is profitable and how it could look like.
357

Prediction of the Impact of Increased Photovoltaics Power on the Swedish Daily Electricity Spot Price Pattern / Prediktion av påverkan från ökad solelproduktion på det dagliga elspotprismönstret i Sverige

Fahlén, Saga January 2022 (has links)
As the demand for electricity increases throughout the globe while we want to reduce the use of fossil fuels, the need for renewable energy sources is bigger than ever. In countries where solar power makes up a large part of the total energy production, the overall electricity spot price level has become lower. This thesis investigates the underlying mechanism that drives the energy market, and in specific, how the solar power impacts the electricity spot price. We present results from studies made in other markets, and introduce a Regime Switching model for explaining the impact in Sweden. We show that an increase of photovoltaics power has a price lowering effect on the daily price pattern in price area SE3 and SE4.
358

Load profile assessment and techno-economic analysis of decentralized PV in Addis Ababa, Ethiopia

Tsegai, Bezawit January 2022 (has links)
Access to electricity might in some parts of the world seem evident. However, Ethiopia struggles to provide its large and growing population with electricity. Although around all the households in the capital Addis Ababa are connected to the electricity grid, the grid is unreliable and results in daily outages. As the photovoltaic (PV) potential in Addis Ababa on the other hand is great, this thesis examines the feasibility and profitability of decentralized PV adoption with battery and hydrogen storage respectively. Based on an ongoing construction project in the sub-city Yeka, Addis Ababa, a reference building was used to simulate the PV systems with battery and hydrogen storage. Furthermore, a load profile based on time-use diaries was developed and used in the simulations, as data on household electric consumption was non-existent. The load profile resulted in an average daily use of 1341 kWh and a 165 kW peak for all of the 130 apartments in the reference building. The results of the simulations indicated that neither of the two systems were feasible nor profitable to implement on the reference building. The PV-system with battery storage was cheaper and required less installed PV capacity, however the cost of energy for both systems was significantly higher than the current cost of energy in Ethiopia. The installed PV capacity of both systems exceeded the maximum capacity that was feasible on the reference building.
359

Utnyttjande av spillvärme och minskade behov av köpt el i biltvättar : En undersökning av Berners miljötvättar i Östersund och Sundsvall / Utilization of waste heat and reduced need for purchased electricity in car washes : A study of Berner's environmental washes in Östersund and Sundsvall

Thorbjörnsson, Ludvig January 2021 (has links)
Berners är en stor aktör inom försäljning och service av bilar och transportfordon i Jämtland och Västernorrland. På sina anläggningar i Sundsvall och Östersund tillhandahåller Berners bland annat biltvättar och rekond och dessa verksamheter ger upphov till stora utsläpp av vatten och kemikalier. För att minska utsläppen har Berners installerat indunstarrening, som är en reningsteknik som bygger på att smutsigt tvättvatten förångas och farliga partiklar faller ur. Med den här tekniken elimineras nästan alla kemikalieutsläpp och ungefär 90 procent av tvättvattnet återanvänds. Indunstarrening kräver mycket energi i form av el som i dagsläget köps in. Reningstekniken ger även upphov till spillvärme i både luft och vatten som i dagsläget inte utnyttjas. Syftet med arbetet är att undersöka potentiella förbättringsåtgärder för Berners biltvättar, för att göra de befintliga och eventuella framtida anläggningar bättre. Detta genom att undersöka möjligheterna av att utnyttja spillvärme och minska behovet av köpt el, genom egenproduktion av el med solceller. Målet är att genom detta ta fram underlag för Berners när de ska besluta om eventuella förändringar av de befintliga tvättarna samt vid byggnation av nya anläggningar. Underlaget ska bestå av resultat för minskade energibehov, minskade utsläpp, minskade behov av köpt el och livstidsbesparingar för förbättringsåtgärderna. I arbetet undersöktes tre olika förbättringsåtgärder. Installation av FTX-ventilation för att värma ingående luft till en angränsande lokal med utgående luft från det rum där indunstaren är placerad, installation av en plattvärmeväxlare för att värma vätskan i en radiatorkrets med utgående destillat från indunstaren samt installation av solceller för att minska behovet av köpt el till indunstaren. Monokristallina-, polykristallina- och tunnfilmssolceller samt olika storlekar av installerad area undersöktes. Minskade energibehov beräknades för FTX och VVX, minskade behov av köpt el beräknades för solceller och minskade utsläpp av koldioxidekvivalenter samt livstidsbesparingar beräknades för alla tre förbättringsåtgärderna. Resultaten visar på att en kombination av att installera FTX, VVX och polykristallina solceller genererar de största livstidsbesparingarna och de största utsläppsminskningarna. Installation av en plattvärmeväxlare för att ta vara på spillvärme i destillat är den enskilt bästa åtgärden för att minska energibehovet. Berners kan vid installation av en eller flera av de olika förbättringsåtgärderna minska energibehoven och utsläppen från biltvättarna, minska behovet av köpt el samtidigt som de kan spara pengar. / Berners is a major player in the sale and service of cars and transport vehicles in Jämtland and Västernorrland. At its facilities in Sundsvall and Östersund, Berners provides, among other things, car washes and auto reconditioning and these operations give rise to large discharges of water and chemicals. To reduce emissions, Berners has installed evaporator treatment, which is a treatment technique based on the evaporation of dirty washing water and the fallout of dangerous particles. With this technology, almost all chemical emissions are eliminated and approximately 90 percent of the washing water is reused. Evaporator cleaning requires a lot of energy in the form of electricity that is currently purchased. The treatment technology also gives rise to waste heat in both air and water, which is currently not used. The purpose of the work is to investigate potential improvement measures for Berner's car washes, to make the existing and possible future facilities better. This is done by investigating the possibilities of utilizing waste heat and reducing the need for purchased electricity, through own production of electricity with solar cells. The goal is to thereby produce a basis for Berners when they are to decide on any changes to the existing washes and when building new facilities. The basis shall consist of results for reduced energy needs, reduced emissions, reduced need for purchased electricity and lifetime savings for the improvement measures. The work examined three different improvement measures. Installation of FTX- ventilation to heat the incoming air to an adjacent room with outgoing air from the room where the evaporator is located, installation of a plate heat exchanger to heat the liquid in a radiator circuit with outgoing distillate from the evaporator and installation of solar cells to reduce the need for bought electricity for the evaporator. Monocrystalline, polycrystalline and thin film solar cells as well as different sizes of installed area were investigated. Reduced energy needs were calculated for FTX and VVX, reduced needs for purchased electricity were calculated for solar cells and reduced emissions of carbon dioxide equivalents as well as lifetime savings were calculated for all three improvement measures. The results show that a combination of installing FTX, VVX and polycrystalline solar cells generates the largest lifetime savings, as well as the largest emission reductions. Installing a plate heat exchanger to take advantage of waste heat in distillates is the single best measure to reduce energy needs. When installing one or more of the various improvement measures, Berners can reduce the energy needs and emissions from the car washes and reduce the need for purchased electricity, while at the same time saving money.
360

Modelling bifacial photovoltaic systems : Evaluating the albedo impact on bifacial PV systems based on case studies in Denver, USA and Västerås, Sweden

Nygren, Anton, Sundström, Elin January 2021 (has links)
This study aims to develop a simulation and optimisation tool for bifacial photovoltaic (PV) modules based on the open-source code OptiCE and evaluate dynamic and static albedo impact on a bifacial PV system. Further, a review of the market price development of bifacial PVs' and an optimisation to maximise energy output was conducted. Two case studies with bifacial PV modules, a single-axis tracker in Denver, USA, and a vertical and a tilted system installed at a farm outside Västerås, Sweden, were analysed in this study. The results showed that an hourly dynamic albedo value could provide more accurate simulation results of the rear side irradiance for the bifacial single-axis tracker than a static albedo value. The developed model showed an R2 accuracy of 93% and 91% for the front and rear sides, respectively, when simulated with an hourly albedo value for the bifacial single-axis tracker system. The optimisation was based on weather data from 2020. The results showed that the tilted reference system could increase its energy output by 8.5% by adjusting its tilt from 30° to 54° and its azimuth angle from 0 to -39°. In contrast, the vertical system would increase its energy output by 2.1% by rotating the azimuth angle from -90° to -66°. Conclusions that could be drawn are that bifacial PV price has closed in on the high-performance monofacial PV price the last five years and may continue to decrease in the coming years. Further, it was concluded that detailed dynamic albedo values lead to more accurate simulations of the ground-reflected irradiance. The availability of measured albedo data at the location is essential when the ground-reflected irradiance stands for a significant share of the irradiance. It was determined that during 2020 the optimal configurations of a vertical and tilted bifacial PV system in Västerås would save 11 300 SEK by consuming self-produced electricity and earn 11 600 SEK from selling the surplus of electricity for the farm outside Västerås.

Page generated in 0.0267 seconds