• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 381
  • 65
  • 46
  • 45
  • 23
  • 15
  • 13
  • 11
  • 10
  • 7
  • 3
  • Tagged with
  • 754
  • 314
  • 225
  • 155
  • 143
  • 139
  • 103
  • 78
  • 77
  • 75
  • 73
  • 70
  • 68
  • 68
  • 65
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
401

Photoluminescence and Extended X-ray Absorption Fine Structure Studies on CdTe Material

Liu, Xiangxin 20 June 2006 (has links)
No description available.
402

Theoretical modeling of polycrystalline thin-film photovoltaics

Attygalle, Muthuthanthrige Lilani Chandrawansha 10 June 2008 (has links)
No description available.
403

Electrochemical Deposition of Transparent Conducting Oxides for Photovoltaic Applications

Attygalle, Dinesh January 2008 (has links)
No description available.
404

Issues in the Development of All-Sputtered ZnO/CdS/CdTe Flexible Solar Cells

Vasko, Anthony C. 25 September 2009 (has links)
No description available.
405

Enhancement of the Deposition Processes of Cu(In,Ga)Se2 and CdS Thin Films via In-situ and Ex-situ Measurements for Solar Cell Application

Ranjan, Vikash 18 May 2011 (has links)
No description available.
406

Interface and Energy Efficiency of Organic Photovoltaics

Zhao, Xinxin Cindy 10 1900 (has links)
<p>As a promising new technology, organic photovoltaics (OPVs) have been widely studied recently. To improve the device efficiency for commercial use of 10%, a number of attempts have been made in my research. The ultra-low frequency AC field was first employed, to align p/n polymers during fabrication. The resulting devices showed 15% increase in device efficiency, attributed to the optimized morphology and enlarged p/n interface. During the improvement process, dual nanostructures of the polymers were found, the highly oriented layer and the randomly distributed part, which provided a better understanding of the OPVs under the AC field alignment.</p> <p>The OPV stability was then studied by impedance measurements, to track multi-interface degradation without breaking the device. It was found the degradation of p/n junction was attributed to the deteriorated morphology and oxidized polymers, whereas the semiconductor/metal interface changed by producing metal oxides as degradation products.</p> <p>The dramatic contrast between the bilayer and bulk heterojunctions (BHJ) was at last investigated by capacitance measurements in vacuum. The existing models of the BHJs had difficulty explaining the higher overall capacitance, compared with that from the bilayer devices. The resulting puzzling charge density was clarified by separating the measured capacitance into two parallel components, one from the space charge of the proposed Schottky junction, and the other from the dark dipoles presumably formed spontaneously across the donor/acceptor interface.</p> / Doctor of Philosophy (PhD)
407

COMBINED LAND USE OF SOLAR INFRASTRUCTURE AND AGRICULTURE FOR SOCIOECONOMIC AND ENVIRONMENTAL CO-BENEFITS IN THE TROPICS

Choi, Chong Seok Seok January 2019 (has links)
Solar photovoltaic (PV) generation has been gaining popularity as low carbon energy technology in the face of the global climate change. However, conventional utility-scale PV requires large swaths of land to be occupied for decades which prevents the land from producing food or performing vital ecosystem services. Co-location of PV with crop cultivation is an emerging strategy for mitigating the land use of PV. In order to optimize this strategy, the impact of the plant growth-related soil properties need to be quantified. To this end, the first portion of the thesis investigated the impacts on the soil properties in a re-vegetated solar PV facility in Boulder, Colorado, which was the oldest vegetation-PV co-location site in the world. The second portion of the thesis uses a life cycle analysis (LCA) approach to test the feasibility of co-location of model crop cultivation and solar PV electricity generation in rural Indonesia, and it is the first study to use the LCA study of the co-located solar in the tropics. The first approach revealed that the soil hydrology, grain size distribution, and total carbon and nitrogen are significantly altered from their original state by the construction and presence of photovoltaic arrays, and that those properties had not been restored to their pre-construction levels despite the fact that ten years had passed since re-vegetation of the PV array. The persistence of the altered soil properties meant that the designs regarding re-vegetation or co-location of PV with crops would have to be considered at the beginning of the construction of the PV to minimize the impact on the soil and the existing vegetation. Furthermore, soil moisture was the highest in the soil underneath the western edge of the PV panels, where the western tilt of the PV panel had concentrated the rainfall. The heterogeneity in soil hydrology created by the panels could be manipulated to benefit the growth of vegetation within the PV array. The LCA approach revealed that a hectare of PV arrays with full module density would carbon offsets against diesel electricity generation and the grid, and that the annual supply of electricity from the PV could satisfy the demand of a typical rural Indonesian village several times over. However, the high capital expenditure of solar mean that co-location with full PV module density would not be economically feasible, even with the income stream from the co-located crop cultivation. In order to reduce the capital expenditure, the PV module density for co-location was reduced to half. The combination of reduced capital expenditure and the income stream from the crop made the co-located land use significantly less costly. Additionally, the rural electrification would be able to provide secondary socioeconomic benefits such as avoidance of health costs through operation of public health infrastructures, increased standard of living, and secondary income opportunities from processing of raw materials. However, better subsidies for renewables, specialized loan structures for small-scale renewable systems, and a culture of co-operation between small landholders would need to be implemented before the co-located system becomes affordable to the inhabitants in rural Indonesian villages. / Geology
408

Hemispherical Dish Microconcentrators for Light-Trapping in Silicon Solar Cells / Hemispherical Dish Microconcentrators for Light-Trapping

MONTEIRO GONCALVES, LETICIA January 2018 (has links)
To improve the performance of solar energy converters and its implementation as a more sustainable electricity source worldwide, researchers have been trying to increase the efficiency of photovoltaic devices while lowering their costs. Conversion efficiency of solar cells can be enhanced through light trapping structures and concentration of incoming light. Light trapping is usually realized by texturization of the solar cell’s surfaces, while concentration is achieved by addition of external apparatus, such as reflectors. A novel design for silicon solar cells is proposed in this thesis, which contains hemispherical dish microconcentrators for light trapping purposes. Through a process flow that includes maskless photolithography, thermal reflow, and metallization via sputtering, the microconcentrators were fabricated and demonstrated to have good concentration properties. Further studies need to be done for optimization of the hemispherical structures, as well as successfully perform the proposed upconverting photolithography for auto-aligned exposure of the photoresist at the microconcentrator’s focus, thus allowing a complete solar cell to be created based on this design. / Thesis / Master of Applied Science (MASc)
409

Understanding Solute-Solvent Interaction and Evaporation Kinetic in Binary-Solvent and Solvent-Polymer Systems / Förståelse av lösningmedelsinteraktioner och avdunstningskinetik i binära lösningsmedel- och lösningsmedel-polymersystem

Henrysson, Sandra January 2024 (has links)
This thesis explores the evaporation kinetics of various polymer-solvent and binary solvent mixtures to explore possible connections between the solutions properties and their evaporation process. By looking at the evaporation of polymer-solutions and binary-solvent solutions, through the change in weight as the solvent evaporates and the evaporation rate of the evaporation process, potential connections could be found. The results indicate that the presence of polymers influence the solvent evaporation, with polystyrene (PS) generally accelerating and polymethyl methacrylate (PMMA) either decelerating or having minimal impact on evaporation rates. Binary solvent mixtures exhibited non-proportional increases in evaporation rates, suggesting complex intermolecular interactions, but no apparent patterns between their properties and deviation in the evaporation process. This would need further research to find possible connections to be able to predict the evaporation process. But these findings highlight the importance of understanding polymer-solvent compatibility and evaporation dynamics to enhance performance and to identify environmentally friendly solvents for organic photovoltaic (OPV) cell fabrication. / Detta examensarbete undersöker avdunstningskinetiken hos olika polymer-lösningsmedel och binära lösningsmedelsblandningar för att utforska möjliga samband mellan lösningarnas egenskaper och deras avdunstningsprocess. Genom att studera avdunstningen av polymer-lösningar och binära lösningsmedelslösningar, genom förändringen i vikt när lösningsmedlet avdunstar och avdunstningshastigheten, kan potentiella samband identifieras. Resultaten indikerar att närvaron av polymerer påverkar lösningsmedlets avdunstning, där polystyren (PS) generellt accelererar och polymetylmetakrylat (PMMA) antingen decelererar eller har minimal inverkan på avdunstningshastigheterna. Binära lösningsmedelsblandningar visade icke-proportionella ökningar i avdunstningstider, vilket tyder på komplexa intermolekylära interaktioner, men inga tydliga mönster mellan deras egenskaper och avvikelser i avdunstningsprocessen kunde identifieras. Ytterligare forskning behövs för att finna möjliga samband för att kunna förutsäga avdunstningsprocessen. Dessa fynd understryker vikten av att förstå polymer-lösningsmedelskompatibilitet och avdunstningsdynamik för att förbättra effektiviteten och kunna identifiera miljövänliga lösningsmedel för tillverkning av organiska solceller (OPV).
410

Increased Functionality Porous Optical Fiber Structures

Wooddell, Michael Gary 22 October 2007 (has links)
A novel fiber optic structure, termed stochastic ordered hole fibers, has been developed that contains an ordered array of six hollow tubes surrounding a hollow core, combined with a nanoporous glass creating a unique fully three dimensional pore/fiber configuration. The objective of this study is to increase the functionality of these stochastic ordered hole fibers, as well as porous clad fibers, by integrating electronic device components such as conductors, and semiconductors, and optically active materials on and in the optical fiber pore structures. Conductive copper pathways were created on/in the solid core fibers using an electroless deposition technique. A chemical vapor deposition system was built in order to attempt the deposition of silicon in on the porous clad fibers. Additionally, conductive poly(3,4-ethylenedioxythiophene)- poly(styrene sulfonate) (PEDOT:PSS) and photoactive polymer blend poly(3- hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-)6,6)C61 (P3HT: PCBM) were deposited on the fibers using dip coating techniques. Quantum dots of Cadmium Selenide (CdSe) with particle sizes of ranging from 2- 10 nm were deposited in the stochastic ordered hole fibers. SEM and EDS analysis confirm that copper, polymer materials, and quantum dots were deposited in the pore structure and on the surface of the fibers. Finally, resistance measurements indicate that the electrolessly deposited copper coatings have sufficient conductivity to be used as metallic contacts or resistive heating elements. / Master of Science

Page generated in 0.0404 seconds