501 |
Revision of Pleosporales : morpho-molecular phylogeny and typificationZhang, Ying, 张英 January 2010 (has links)
published_or_final_version / Biological Sciences / Doctoral / Doctor of Philosophy
|
502 |
Phylogeny and floral host relationships of Callandrena (Hymenoptera : Andrenidae : Andrena)Larkin, Leah laPerle 13 May 2015 (has links)
Callandrena, a subgenus of 80 described species of bees in the genus Andrena (Hymenoptera: Andrenidae) is shown, via phylogenetic analysis of both mitochondrial and nuclear DNA sequence data, to be polyphyletic. The characters previously uniting this group have likely arisen by convergent evolution among unrelated lineages that have independently specialized on flowers of the Asteraceae for pollen consumption. At this time, we cannot definitively state whether there are two or three clades of bees formerly ascribed to Callandrena, nor whether one clade may belong to the European subgenus Chrysandrena as has been proposed, so we do not erect a new subgenus of Andrena at this time. The limits of Callandrena sensu stricto are provisionally delimited based on a single morphological character. The phylogenetic relationships of the two groups relative to other Andrena subgenera are discussed in Chapter 2. In Chapter 3, Clade B, as defined for Callandrena in Chapter 2, is used to investigate the evolution of pollen host choice. Diet breadth is determined by analysis of pollen loads of at least 20 individual females per species. The choice of host and degree of specificity are then mapped onto the molecular phylogeny to investigate the evolution of these traits. Oligolecty appears to be the ancestral state in Andrena; polylecty has evolved several times; and reversals to oligolecty within these lineages have also occurred. Within the oligolectic lineage studied, host shifts were not uncommon. During the course of this study, a number of undescribed species were collected. Five are described in Chapter 4. / text
|
503 |
The evolution of RNA and the actin protein familyKeller, Thomas E. 20 August 2015 (has links)
In my dissertation I have broadly studied the evolution of RNA as well as the phylogenetic history of the actin protein family. In the first chapter I examined how various evolutionary processes interact at high mutation rates, which led to simple prediction based on the strength of selection. In the second chapter, I tested mRNA secondary structure stability at the beginning of genes as a way of identifying whether putative genes might be functional or not. Finally, I reconstructed the phylogenetic history of the actin protein family in vertebrates, revealing that a novel isoform is actively evolving in contrast to the remaining protein isoforms.
|
504 |
Phylogeny and comparative chloroplast genomics of the CampanulaceaeHaberle, Rosemarie Claire 28 August 2008 (has links)
Not available / text
|
505 |
Evolution, Genetics and Ecology of Burrowing Behavior in Deer Mice (Genus Peromyscus)Weber, Jesse January 2012 (has links)
Behavioral differences among closely related species can result from adaptation via natural selection, and this is especially true of innately expressed behavior that shows evidence of complex design or function. A major goal of biologists is to understand how and why complex, adaptive behavior evolves. To this end, I investigated the evolution, ecology and genetics of innate burrowing differences in deer mice (genus Peromyscus). First, I show that several species of deer mice recapitulate their natural burrowing habits under laboratory conditions. When I compare these behaviors in a phylogenetic context, I find that burrowing is species-specific and the complex burrows of the oldfield mouse (P. polionotus) likely arose from simple behavior similar to that expressed by two closely related species. Second, I examine the influences of soil composition and genetics on the burrowing behavior of oldfield mice. Although burrow length variation is relatively constant in nature, burrow depth is negatively associated with the silt content of soils. To determine the genetic architecture of complex burrowing, I crossed the oldfield mouse and its sister species, the deer mouse (P. maniculatus), which builds a relatively simple burrow. My results suggest that complexity results from the integration of several component behaviors: the lengthening of entrance tunnels and the construction of an escape tunnel. Additionally, complex burrowing segregates as a dominant trait and I identify four quantitative trait loci that influence burrow variation--three affect tunnel length and a single locus influences escape tunnel construction. Last, I test whether Peromyscus burrow socially. Specifically, I measure burrows constructed by both pairs of mice and individuals across three Peromyscus species with different social systems. Only in the monogamous species (P. polionotus), which is also the only species that builds complex burrows, do pairs of mice coordinate their behavior to build longer burrows. This effect of pairing increases burrow length in same-sex pairs of unrelated individuals, but it is most pronounced in male-female pairs, suggesting that oldfield mice invest most heavily in burrows constructed for the purpose of reproduction.
|
506 |
Phylogenetic systematics of the canal raphe bearing orders Surirellales and Rhopalodiales (Bacillariophyta)Ruck, Elizabeth Clare 27 January 2011 (has links)
The class Bacillariophyceae, encompasses all diatoms that possess a raphe. Members of the orders Bacillariales, Rhopalodiales and Surirellales have a canal raphe system. Historically, the possession of this character was considered support for a close evolutionary relationship. To investigate phylogenetic relationships, a three gene dataset was constructed for 49 strains representing 9 of the 11 orders within the Bacillariophyceae. We provide the first formal tests of homology of the canal raphe system and the first demonstration that the Rhopalodiales are nested within the Surirellales. Results strongly reject the monophyly of Bacillariales, Rhopalodiales, and Surirellales thereby discounting the canal raphe as a homologous character.
The Surirellales include three families: Surirellaceae, Entomoneideaceae, and Auriculaceae, while Rhopalodiales has only three genera in one family, the Rhopalodiaceae. In order to test familial and generic concepts, I expanded taxon representation and collected DNA sequence data for 125 strains. Taken together, only 5 of the 12 genera (Entomoneis, Stenopterobia, Cymatopleura, Petrodictyon and Epithemia) were found to be monophyletic. Our current concepts of the two most species-rich genera, Surirella and Campylodiscus, are too broad as the analyses resolved taxa from these two genera into multiple independent lineages.
The “Robustoid” lineage, comprised of Surirella Robustae, Campylodiscus Robusti, and Stenopterobia, exhibits a high degree of endemism within ancient Lake Ohrid, with 17 species considered endemic or relict taxa. A dataset of three molecular markers and 71 Robustoid taxa from Lake Ohrid, Europe, and North America was used to construct a preliminary phylogeny. The aim was to investigate phylogenetic relationships and test hypotheses of speciation and morphological evolution. The recovered paraphyly of Lake Ohrid taxa eliminates the possibility that the Ohrid Robustoids as a whole are a product of intralacustrine speciation. However, sister relationships between putative Ohrid endemics and unexplored morphological diversity within some species complexes (e.g. Campylodiscus marginatus, Scoliodiscus spp.) leave open the possibility that these lineages may be the result of intralacustrine speciation. / text
|
507 |
A molecular phylogenetic investigation of the Staphyleaceae (DC.) Lindl. : with implications for its taxonomy and biogeographySimmons, Sarah Louise 10 June 2011 (has links)
Not available / text
|
508 |
DNA sequence-based Identification and molecular phylogeni within subfamily Dipterocarpoideae (Dipterocarpaceae)Harnelly, Essy 09 January 2013 (has links)
Die Arten der Familie der Dipterocarpaceaen (Flügelfruchtgewächse) sind in der Region Malesien die Hauptbaumarten in Bezug auf Holzgewinnung. Die geografische Verbreitung der Pflanzenfamilie erstreckt sich bis Südamerika und Afrika. Die Familie umfasst etwa 500 Arten in 17 verschiedenen Gattungen und ist unterteilt in drei Unterfamilien: Dipterocarpoideae, Monotoideae und Pakaraimoideae (Ashton, 1982). Dipterocarpoideae ist mit 470 Arten in 13 Gattungen die artenreichste Unterfamilie (Ashton, 1982). Sie ist noch einmal unterteilt in zwei Triben: Dipterocarpeae und Shoreae. Dipterocarpeae umfasst die Gattungen Anisoptera, Cotylelobium, Dipterocarpus, Stemonoporus, Upuna, Vateria und Vateriopsis, Shoreae die Gattungen Dryobalanops, Hopea, Neobalanocarpus, Parashorea und Shorea. Shorea und Hopea sind mit 169, bzw. 100 Arten die artenreichsten Gattungen.
Studien zur molekularen Phylogenie der Unterfamilie Dipterocarpoideae werden bereits seit 1998 durchgeführt, besonders an der Gattung Shorea und ihren Schwestergattungen im Tribus Shoreae, da diese Gattung die höchste Artenzahl aufweist und von allen Dipterocarpaceaen das wertvollste Holz liefert. Viele dieser Arten sind vom Aussterben bedroht. Ziel von Untersuchungen zur molekularen Phylogenie ist die Vervollständigung von Phylogenien, die auf morphologischen Merkmalen beruhen, da die Einordnung von einigen Gattungen im Tribus Dipterocarpoideae noch immer zur Diskussion steht. Die Klassifizierung von Shorea in dieser Untersuchung bezieht sich auf Ashton (1982) und Symington (1943). Symington (1943) unterteilt Shorea basierend auf der Farbe des Holzes (White Meranti, Yellow Meranti, Balau und Red Meranti). Ashton (1982) hat die Klassifizierung von Symington (1943) grundsätzlich beibehalten, aber einige der Gruppen wurden in niedrigere taxonomische Ränge neu klassifiziert.
Die Nachfrage nach Identifikationsmöglichkeiten für Dipterocapaceaen zur Vermeidung von Betrug bei der Zertifizierung von Holz hat zu einer Verbesserung moderner Identifikationssysteme geführt, die auch molekulare Daten nutzen. Traditionell werden Dipterocarpaceaen anhand von morphologischen Merkmalen identifiziert. Allerdings ist diese Art der Bestimmung ist oft nur eingeschränkt nutzbar, vor allem wenn keine Blüte vorhanden ist, da dies das eindeutigste taxonomische Bestimmungsmerkmal bei Dipterocarpaceaen ist.
Die große Menge molekularer Daten und die fortschrittlichen Technologien im Bereich der DNA-Sequenzierung ermöglichten es dem DNA-Barcoding zu einer weitverbreiteten Technik für verschiedene taxonomische Studien zu werden. Dabei will es die traditionelle Taxonomie nicht ersetzen, sondern ergänzen und den Identifikationsvorgang beschleunigen. Zusätzlich ermöglicht die große Anzahl an verfügbaren Sequenzen in öffentlichen Datenbanken, wie z.B. die NCBI-Datenbank, die Entwicklung eines molekularen taxonomischen Schlüssels, einem neuen Konzept der Artidentifikation. Allerdings sind die Methoden des DNA-Barcoding noch immer in ihren Anfängen, so wird z.B. die Datenbank für das Projekt DNA Barcoding zurzeit noch eingerichtet.
Diese Studie hat zum Ziel, mithilfe von vier Chloroplastenregionen (trnL intron, psbC-trnS IGS, matK und rbcL) die phylogenetischen Beziehungen in der Unterfamilie Dipterocarpoideae zu erschließen, sowie die Einordnung der verschiedenen Gattungen. Zusätzlich prüft diese Untersuchung auch die Eignung der beiden Barcoding-Regionen matK und rbcL, die vom Konsortium Barcode of Life (CBOL) im Jahr 2009 vorgeschlagen wurden. Ein weiteres Ziel ist die Entwicklung eines taxonomischen Identifizierungsschlüssels für die Identifizierung von Arten basierend auf der phylogenetischen Analyse.
Alle Sequenzen von Dipterocarpaceaen, die in der NCBI-Datenbank hinterlegt sind, wurden für vier Chloroplastenregionen (trnL intron, psbC-trnS IGS, matK und rbcL) abgerufen. Zusätzlich zu den Sequenzen aus der NCBI-Datenbank wurden für die Untersuchung auch Proben sequenziert, die in der Abteilung Forstgenetik und Forstpflanzenzüchtung der Universität Göttingen zur Verfügung standen, um eine höchstmögliche Zahl von unterschiedlichen Arten untersuchen zu können.
Für die phylogenetischen Analysen wurde die Software MEGA 5 verwendet und die statistischen Methoden maximum parsimony (MP), maximum likelihood (ML) und neighbor joining (NJ). Für die DNA-basierte Identifizierung wurde die Eignung von zwei Barcoding-Regionen mithilfe von nBLAST getestet. Die phylogenetische Analyse wurde unter Verwendung der neighbor joining-Methode durchgeführt.
Es war für eine große Anzahl von Arten möglich, Sequenzen von den oben genannten Chloroplastenregionen zu erhalten: 145 Arten für trnL intron, 117 Arten für psbC-trnS IGS, 116 Arten für matK und 69 Arten für rbcL. Die Länge der Sequenzen für die verschiedenen Regionen variierte, 537 bp, 1136 bp, 653 bp und 647 bp für die Regionen trnL intron, psbC-trnS IGS, matK bzw. rbcL.
Die verschiedenen Methoden MP, ML und NJ für die phylogenetischen Analysen erzeugten sehr ähnliche Baumtopologien. Daher basiert die Diskussion vor allem auf den Ergebnisse der MP-Methode. Grundsätzlich war es nicht möglich, die evolutionären Beziehungen der Unterfamilie der Dipterocarpoideae anhand der vier Chloroplastenregionen eindeutig zu entschlüsseln. Die Regionen ermöglichten nur eine Aufklärung der Triben Dipterocarpeae und Shoreae, waren aber innerhalb der Triben deutlich weniger erfolgreich, vor allem in Bezug auf Shoreae. Für die Gattung Dipterocarpus stehen bisher nur Sequenzdaten der Regionen trnL intron und matK zur Verfügung. In dieser Studie wurden für beide Regionen eindeutig abgrenzbare Gruppen von Arten entdeckt. Es wird vermutet, dass Dipterocarpus die basale Gruppe der Dipterocarpoideae repräsentiert (Meijer, 1979). Diese Gattung hat der Familie auch ihren Namen gegeben, möglicherweise weil sie als eine sehr ursprüngliche Gruppe innerhalb der Dipterocarpaceaen gilt (Maury – Lechon, 1979). Auch ist diese Gattung innerhalb der Familie der Dipterocarpaceaen eindeutig definiert, basierend auf morphologischen Merkmalen und molekularen Analysen.
Die Analysen der Region psbC-trnS IGS bestätigten die Ergebnisse von Symington (1943) basierend auf der Farbe des Holzes dahingehend, dass die Gattung Shorea eine monophyletische Gruppe bildet. Durch die Analyse der Region matK war es am ehesten möglich, die Beziehungen innerhalb des Tribus Dipterocarpeae zu beschreiben und die Sektion Doona innerhalb der Gattung Shorea als monophyletische Gruppe abzugrenzen. Allerdings war diese Region nicht geeignet für die weitere Klassifizierung innerhalb des Tribus Shoreae. Obwohl die Region rbcL die erste Chloroplastenregion ist, die sequenziert wurde, sind in der NCBI-Datenbank nur wenige Sequenzen verfügbar. Die Ergebnisse basierend auf den eigenen Labordaten führten zu dem Schluss, dass diese Region nicht geeignet ist, um die evolutionären Beziehungen der Dipterocarpoideae unterhalb der Gattungsebene aufzuzeigen. Die Region matK zeigte in dieser Untersuchung eine nahe Verwandtschaft zwischen den Gattungen Dryobalanops und Dipterocarpus, während die Region trnL intron eher darauf hindeutete, dass Dryobalanops eine Verwandtschaft zur Sektion Balau aus der Shorea-Gruppe aufweist. Diese gegensätzlichen Ergebnisse unterstützen die Annahme von Indrioko (2005), dass diese Gattung eine basale Gruppe des Tribus Shoreae ist.
Die Artidentifizierung basierend auf DNA-Daten wurde anhand von zwei Vorgehensweisen untersucht, DNA-Barcoding und ein molekularer taxonomischer Identifizierungsschlüssel. Die zwei Barcode-Regionen matK und rbcL, übernommen vom Consortium for the Barcode of Life für Landpflanzen (Hollingsworth et al., 2009), wurden auf ihre Eignung als Barcoding-Regionen für die Unterscheidung der Dipterocarpaceae geprüft. Die meisten benötigten Informationen für die Region matK waren in der NCBI-Datenbank vorhanden, aber es wurden auch einige zusätzliche Proben in dieser Studie verwendet. Insgesamt wurden 119 bzw. 67 Proben für die Untersuchung der Region matK bzw. rbcL, verwendet. Für die Beurteilung der Effektivität der Barcoding-Analyse in dieser Untersuchung wurden zunächst mithilfe von neighbor joining-Bäumen monophyletische Gruppen einmal für die Eingabesequenzen und einmal für die Referenzsequenzen, die in der NCBI-Datenbank hinterlegt sind, identifiziert. Unter Verwendung von nBLAST wurde dann nach Ähnlichkeiten zwischen den Eingabesequenzen aus dem Labor und den Sequenzen aus der NCBI-Datenbank gesucht. Obwohl der neighbor joining-Baum einige der Sequenzen in die korrekte Gattung eingeordnet hat, konnte diese Region keine drei klar abgetrennten Gruppen für die Gattungen Shorea, Hopea und Parashorea erstellen. Die nBLAST-Analyse ergab für die meisten Eingabesequenzen auf der Artebene eine falsche Identifizierung. Aufgrund der fehlenden Unterscheidung zwischen Arten durch die Region matK, was nicht nur durch die Ergebnisse des nBLAST, sondern auch durch die phylogenetische Analyse deutlich wurde, und der Probleme bei der Amplifizierung ist diese Region ungeeignet als Barcoding-Region für die Familie der Dipterocarpaceaen. Über die Region rbcL kann keine weitere Aussage gemacht werden, da nur wenige Sequenzen für diese Region in der Datenbank verfügbar waren. Allerdings konnte die neighbor joining-Analyse zeigen, dass diese Region erfolgreich auf der Gattungsebene unterscheidet, aber nicht auf der Artebene.
Das DNA-basierte Identifizierungsverfahren unter der Verwendung eines taxonomischen Identifizierungsschlüssels kann noch nicht ausreichend zwischen Arten unterscheiden. Viele verschiedene Arten mit dem gleichen Haplotypen wurden bei der Erstellung des Schlüssels gefunden. Ein möglicher Grund ist die Verwendung der Region trnL intron für die Erstellung des Schlüssels. Taberlet (2007) berichtet, dass diese Region nicht effektiv ist bei der Unterscheidung zwischen nah verwandten Arten.
|
509 |
Global and Fine Scale Molecular Studies of Polyploid Evolution in Crataegus L. (Rosaceae)Lo, Eugenia Yuk Ying 19 January 2009 (has links)
As many as 70% of angiosperm species are known to contain polyploids, but many aspects of polyploid evolution are unclear in woody plants. Crataegus is a woody genus of Rosaceae comprising 140-200 species that are widely distributed in the Northern Hemisphere. Several species, particularly those in North America, are shown to contain polyploids. The overall goal of the thesis is to provide a better understanding of polyploid evolution by resolving problems from intergeneric to intraspecific levels in Crataegus using phylogenetic and population genetic approaches. Three major aspects were investigated: (1) Phylogeography of the Old and New World Crataegus; (2) Reproductive system and distribution of cytotypes of the black-fruited series Douglasianae in Pacific Northwest and; (3) Origins, population structure, and genetic diversity of diploid and polyploid species.
Phylogenetic analyses of molecular data provide evidences of historical events such as trans-Beringian migrations and North Atlantic vicariance that contributed to modern distribution of Crataegus. Poor resolution and short internal branches in eastern North American species suggest genetic bottlenecks and/or rapid divergence following glaciations. In the Pacific Northwest, polyploids of series Douglasianae show a wider distribution and ecological amplitude than diploids. Parsimony tree and network analyses indicate that autotriploids and allotriploids occur in C. suksdorfii, while tetraploid C. suksdorfii are formed via the triploid bridge followed by introgression of sympatric C. douglasii. At the regional level, microsatellite data indicate a separation of the Pacific coastal diploids and triploids from the Columbia Plateau and Rocky Mountain triploids and tetraploids. High genetic differentiation among C. suksdorfii populations suggests that gene flow is limited by ploidy level differences as well as geographical distance. Within-population multilocus genotypic variation is greatest in sexual diploids, and least in apomictic triploids. Frequent gene flow via seed dispersal contributes to an appreciable level of intrapopulation diversity in apomictic tetraploids, and counterbalances the effects of apomixis and/or self-fertilization, which diminish genetic variation within and between seed families. These findings collectively clarify taxonomy and historical biogeography, provide an explicit reticulation model for polyploid formation, and shed light on evolution of natural populations in woody plants that show heterogeneous ploidy levels and reproductive systems.
|
510 |
Global and Fine Scale Molecular Studies of Polyploid Evolution in Crataegus L. (Rosaceae)Lo, Eugenia Yuk Ying 19 January 2009 (has links)
As many as 70% of angiosperm species are known to contain polyploids, but many aspects of polyploid evolution are unclear in woody plants. Crataegus is a woody genus of Rosaceae comprising 140-200 species that are widely distributed in the Northern Hemisphere. Several species, particularly those in North America, are shown to contain polyploids. The overall goal of the thesis is to provide a better understanding of polyploid evolution by resolving problems from intergeneric to intraspecific levels in Crataegus using phylogenetic and population genetic approaches. Three major aspects were investigated: (1) Phylogeography of the Old and New World Crataegus; (2) Reproductive system and distribution of cytotypes of the black-fruited series Douglasianae in Pacific Northwest and; (3) Origins, population structure, and genetic diversity of diploid and polyploid species.
Phylogenetic analyses of molecular data provide evidences of historical events such as trans-Beringian migrations and North Atlantic vicariance that contributed to modern distribution of Crataegus. Poor resolution and short internal branches in eastern North American species suggest genetic bottlenecks and/or rapid divergence following glaciations. In the Pacific Northwest, polyploids of series Douglasianae show a wider distribution and ecological amplitude than diploids. Parsimony tree and network analyses indicate that autotriploids and allotriploids occur in C. suksdorfii, while tetraploid C. suksdorfii are formed via the triploid bridge followed by introgression of sympatric C. douglasii. At the regional level, microsatellite data indicate a separation of the Pacific coastal diploids and triploids from the Columbia Plateau and Rocky Mountain triploids and tetraploids. High genetic differentiation among C. suksdorfii populations suggests that gene flow is limited by ploidy level differences as well as geographical distance. Within-population multilocus genotypic variation is greatest in sexual diploids, and least in apomictic triploids. Frequent gene flow via seed dispersal contributes to an appreciable level of intrapopulation diversity in apomictic tetraploids, and counterbalances the effects of apomixis and/or self-fertilization, which diminish genetic variation within and between seed families. These findings collectively clarify taxonomy and historical biogeography, provide an explicit reticulation model for polyploid formation, and shed light on evolution of natural populations in woody plants that show heterogeneous ploidy levels and reproductive systems.
|
Page generated in 0.0601 seconds