Spelling suggestions: "subject:"dateoria"" "subject:"ateoria""
1 |
A dimensão de Gelfand-Kirillov e algumas aplicações a PI-Teoria. / The Gelfand-Kirillov dimension and some applications to PI-Theory.LOBÃO, Carlos David de Carvalho. 22 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-22T14:49:45Z
No. of bitstreams: 1
CARLOS DAVID DE CARVALHO LOBÃO - DISSERTAÇÃO PPGMAT 2009..pdf: 418073 bytes, checksum: b2deb42599e396408cd91ddf1721d8eb (MD5) / Made available in DSpace on 2018-07-22T14:49:45Z (GMT). No. of bitstreams: 1
CARLOS DAVID DE CARVALHO LOBÃO - DISSERTAÇÃO PPGMAT 2009..pdf: 418073 bytes, checksum: b2deb42599e396408cd91ddf1721d8eb (MD5)
Previous issue date: 2009-03 / As álgebras verbalmente primas são bem conhecidas em característica 0. Já sobre corpos de característica p > 2 pouco sabemos sobre elas. Apresentamos modelos genéricos e calcularemos a dimensão de Gelfand-kirillov para as álgebras E⊗E, Aa,b, Ma,b(E)⊗E e Ma,b(E)⊗E. Como consequência, obteremos a prova de não PI-equivalência entre álgebras importantes para PI-Teoria em características positiva. / The verbally prime algebras are well understood in characteristic 0 while over a field of characteristic p > 2 little is known about them. In this work we discuss some sharp differents between these two generics cases for the characteristc. We exhibit constructions of generic models. By using these models we compute the Gelfand-Kirillov dimension of the relatively free algebras of rank m in the varieties generated by E⊗E, Aa,b, Ma,b(E)⊗E e Ma,b(E)⊗E. As consequence we obtain the PI non equivalence of important algebras for the PI theory in positive characteristic.
|
Page generated in 0.0334 seconds