• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • Tagged with
  • 20
  • 20
  • 20
  • 11
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

α-Lipoic Acid Attenuates LPS-Induced Cardiac Dysfunction Through a PI3K/Akt-Dependent Mechanism

Jiang, Surong, Zhu, Weina, Li, Chuanfu, Zhang, Xiaojin, Lu, Ting, Ding, Zhengnian, Cao, Kejiang, Liu, Li 01 May 2013 (has links)
Myocardial dysfunction is an important manifestation of sepsis/septic shock. Activation of Phosphatidylinositol 3-kinase(PI3K)/protein kinase B (Akt) signaling pathway has been shown to improve cardiac performance during sepsis/septic shock. We have reported previously that α-lipoic acid (LA) activates PI3K/Akt pathway in neuronal cells. It is possible, therefore, that treatment with LA will attenuate cardiac dysfunction during sepsis/septic shock through a PI3K/Akt-dependent mechanism. To test this possibility, we treated mice with LA prior to lipopolysaccharide (LPS) challenge. Cardiac function was analyzed by echocardiography 6 h after LPS challenge. LPS significantly suppressed cardiac function as evidenced by decreases in EF% and FS% in mice. However, LA pretreatment significantly attenuated cardiac dysfunction following LPS challenge. LA pretreatment also improved survival in LPS-challenged mice. Furthermore, LA markedly attenuated the LPS-induced inflammatory response in myocardium, as evidenced by decreases in the upregulation of VCAM-1, ICAM-1 and iNOS, as well as myocardial leucocytes infiltration. Moreover, LPS challenge significantly decreased the phosphorylation levels of Akt and Gsk-3β, which was prevented by LA pretreatment. More importantly, inhibition of PI3K/Akt signaling by Wortmannin (WM) completely abrogated the LA-induced protection in cardiac dysfunction following LPS challenge. Collectively, our results demonstrated that LA improved cardiac function during endotoxemia. The mechanism was through, at least in part, preserved activation of the PI3K/Akt signaling.
12

Overexpression of HSPA12B Protects Against Cerebral Ischemia/Reperfusion Injury via a PI3K/Akt-Dependent Mechanism

Ma, Yujie, Lu, Chen, Li, Chuanfu, Li, Rongrong, Zhang, Yangyang, Ma, He, Zhang, Xiaojin, Ding, Zhengnian, Liu, Li 01 January 2013 (has links)
Background and purpose: HSPA12B is a newly discovered member of the Hsp70 family proteins. This study investigated the effects of HSPA12B on focal cerebral ischemia/reperfusion (I/R) injury in mice. Methods: Transgenic mice overexpressing human HSPA12B (Tg) and wild-type littermates (WT) were subjected to 60. min of middle cerebral artery occlusion to induce ischemia and followed by reperfusion (I/R). Neurological deficits, infarct volumes and neuronal death were examined at 6 and 24. hrs after reperfusion. Blood-brain-barrier (BBB) integrity and activated cellular signaling were examined at 3. hrs after reperfusion. Results: After cerebral I/R, Tg mice exhibited improvement in neurological deficits and decrease in infarct volumes, when compared with WT I/R mice. BBB integrity was significantly preserved in Tg mice following cerebral I/R. Tg mice also showed significant decreases in cell injury and apoptosis in the ischemic hemispheres. We observed that overexpression of HSPA12B activated PI3K/Akt signaling and suppressed JNK and p38 activation following cerebral I/R. Importantly, pharmacological inhibition of PI3K/Akt signaling abrogated the protection against cerebral I/R injury in Tg mice. Conclusions: The results demonstrate that HSPA12B protects the brains from focal cerebral I/R injury. The protective effect of HSPA12B is mediated though a PI3K/Akt-dependent mechanism. Our results suggest that HSPA12B may have a therapeutic potential against ischemic stroke.
13

α-Lipoic Acid Prevents Bupivacaine-Induced Neuron Injury in Vitro Through a PI3K/Akt-Dependent Mechanism

Wang, Xiaohui, Zhang, Xiaojin, Cheng, Yunlin, Li, Chuanfu, Zhang, Wenbo, Liu, Li, Ding, Zhengnian 01 January 2010 (has links)
Background: Bupivacaine is an amide type local anesthetic which is widely used for epidural anesthesia and nerve blockade in patients. However, local administration of bupivacaine could cause neuron injury showing transient neurologic symptoms. α-Lipoic acid (LA) was shown to protect nerve cells from substance-induced injury. We hypothesized that LA administration could attenuate bupivacaine-induced neurotoxicity. Methods: To evaluate our hypothesis, we treated mouse neuroblastoma N2a cells with LA 30 min before the cells were exposed to bupivacaine. We evaluated cellular injury by examination of cell viability, morphology changes, nuclear condensation, and Annexin V staining. We also examined the levels of intracellular reactive oxygen species (ROS) and activation of PI3K/Akt signaling pathway. In a separate experiment, we determined the effect of Akt inhibition on cell viability in the presence of LA and bupivacaine. Results: Bupivacaine treatment significantly induced cell injury as evidenced by decreased cell viability, increased nuclear condensation and Annexin V staining. Administration of LA significantly attenuated bupivacaine-induced cell injury. In addition, LA treatment increased the levels of phospho-Akt and phospho-GSK3β and attenuated bupivacaine decreased the levels of ROS. More significantly, pharmacological inhibition of Akt abolished the LA-induced protection from bupivacaine-caused cell injury. Conclusions: Our findings suggest that pretreatment of neuroblastoma cells with LA protected neural cells from bupivacaine-induced injury. The mechanisms involve activation of the PI3K/Akt signaling pathway.
14

Reduced Cardiac Hypertrophy in Toll-Like Receptor 4-Deficient Mice Following Pressure Overload

Ha, Tuanzhu, Li, Yuehua, Hua, Fang, Ma, Jinag, Gao, Xiang, Kelley, Jim, Zhao, Aiqiu, Haddad, Georges E., Williams, David L., Browder, I. William, Kao, Race L., Li, Chuanfu 01 November 2005 (has links)
Objective: We have previously demonstrated that nuclear factor kappa B (NFκB) activation is needed for the development of cardiac hypertrophy in vivo. NFκB is a downstream transcription factor in the Toll-like receptor (TLR)-mediated signaling pathway; therefore, we investigated a role of TLR4 in cardiac hypertrophy in vivo. Methods: TLR4-deficient mice (C.C3H-Tlr4 lps-d, n = 6), wild-type (WT) genetic background mice (BALB/c, n = 6), TLR4-deleted strain (C57BL/10ScCr, n = 8), and WT controls (C57BL/10ScSn, n = 8) were subjected to aortic banding for 2 weeks. Age-matched surgically operated mice served as controls. In a separate experiment, rapamycin (2 mg/kg, daily) was administered to TLR4-deficient mice and WT mice immediately following aortic banding. The ratio of heart weight/body weight (HW / BW) was calculated, and cardiac myocyte size was examined by FITC-labeled wheat germ agglutinin staining of membranes. NFκB binding activity and the levels of phospho-p70S6K in the myocardium were also examined. Results: Aortic banding significantly increased the ratio of HW / BW by 33.9% (0.601 ± 0.026 vs. 0.449 ± 0.004) and cell size by 68.4% in WT mice and by 10.00% (0.543 ± 0.011 vs. 0.495 ± 0.005) and by 11.8% in TLR4-deficient mice, respectively, compared with respective sham controls. NFκB binding activity and phospho-p70S6K levels were increased by 182.6% and 115.2% in aortic-banded WT mice and by 78.0% and 162.0% in aortic-banded TLR4-deficient mice compared with respective sham controls. In rapamycin-treated aortic-banded mice, the ratio of HW / BW was increased by 18.0% in WT mice and by 3.5% in TLR4-deficient mice compared with respective sham controls. Conclusion: Our results demonstrate that TLR4 is a novel receptor contributing to the development of cardiac hypertrophy in vivo and that both the TLR4-mediated pathway and PI3K/Akt/mTOR signaling are involved in the development of cardiac hypertrophy in vivo.
15

Cellular, Molecular and Functional Characterization of the Tumor Suppressor Candidate MYO1C

Visuttijai, Kittichate January 2016 (has links)
Tumor suppressor genes play a role as a growth regulator and a gatekeeper of a cell. Their inactivation is often detected in malignant tumors. Identification of novel tumor suppressor gene candidates may help to further understand tumorigenesis and aid in the discovery of a new treatment leading toward cure of cancer. This PhD research project aimed to understand functional significance of a novel tumor suppressor gene candidate, myosin IC (MYO1C) and to identify potential interaction(s) of the MYO1C protein with key components of the signaling pathways involving in cancer development. In an experimental rat model for endometrial carcinoma (EC), detailed molecular genetic analysis of a candidate tumor suppressor region located distal to the tumor protein 53 (Tp53) suggested the myosin IC gene (Myo1c) as the best potential target for deletion of the genetic material. The question arising was whether and how MYO1C could function as a tumor suppressor gene. By using qPCR, Western blot or immunohistochemistry analyses, we examined MYO1C protein level in panels of well-stratified human colorectal cancer (CRC) and EC respectively. We found that MYO1C was significantly down-regulated in these cancer materials and that for the EC panel, the observed down-regulation of MYO1C correlated with tumor stage, where tumors at more advanced stages had less expression of MYO1C. In cell transfection experiments, we found that over-expression of MYO1C significantly decreased cell proliferation, and silencing MYO1C with siRNA increased cell viability. Additionally, knockdown of MYO1C impaired the ability of cells to migrate, spread and adhere to the surface. Recent published studies suggested a potential interplay between MYO1C and the phosphoinositide 3-kinase (PI3K)/AKT pathway. To examine this hypothesis, we analyzed the expression and/or activation of components of the PI3K/AKT and RAS/ERK signaling pathways in vivo in CRC samples, and in vitro in cells transfected with the MYO1C gene expression construct or MYO1C-targeted siRNA. To identify other potential pathways/ mechanisms through which MYO1C may exert its tumor suppressor activity, we additionally performed new sets of MYO1C-siRNA knockdown experiments. At different time points post transfection, we performed microarray global gene expression experiments followed by bioinformatics analysis of the data. Altogether, the results suggested an early PI3K/AKT response to altered MYO1C expression. We additionally identified several cancer-related genes/pathways with late response to MYO1C knockdown. All things considered, the identification of MYO1C-expression impact on cell proliferation, migration, and adhesion in combination with its interplay between several cancer-related genes and signaling pathways provide further evidence for the initial hypothesis of a tumor suppressor activity of MYO1C. / Cellular, Molecular and Functional Characterization of the Tumor Suppressor Candidate MYO1C
16

Role of TLRs, Hippo-YAP1 Signaling, and microRNAs in Cardiac Repair and Regeneration of Damaged myocardium During Ischemic Injury

Wang, Xiaohui 01 August 2017 (has links) (PDF)
Cardiovascular disease is a leading cause of death in the United States. Toll-like receptor (TLR)-mediated pathways have been demonstrated to play a role in myocardial ischemia/reperfusion (I/R) injury. We and others have shown that PI3K/Akt signaling is involved in regulating cellular survival and protecting the myocardium from I/R induced injury. In this dissertation, we provide compelling evidence that miR-125b serves to “fine tune” TLR mediated NF-kB responses by repressing TNF-a and TRAF6 expression. We constructed lentiviral expressing miR-125b, delivered it into the myocardium. The data showed that delivery of lentivirus expressing miR-125b significantly reduces myocardial infarct size and improves cardiac function in I/R hearts. Mechanistic studies demonstrated that miR-125b negatively regulates TLR mediated NF-kB activation pathway by repressing TNF-a and TRAF6 expression in the myocardium. We also observed that transfection of the myocardium with lentivirus expressing miR-214 markedly attenuates I/R induced myocardial infarct size and cardiac dysfunction. We demonstrated that miR-214 activates PI3K/Akt signaling by targeting PTEN expression in the myocardium. We also investigated the role of TLR3 in neonatal heart repair and regeneration following myocardial infarction (MI). Wild type (WT) neonatal mice showed fully cardiac functional recovery and small infarct size, while TLR3 deficient mice exhibited impaired cardiac functional recovery and large infarct area after MI. Poly (I:C), a TLR3 ligand, administration significantly enhances glycolysis, YAP1 activation and the proliferation of WT neonatal cardiomyocytes. 2-deoxyglucose (2-DG), a glycolysis inhibitor treatment abolished cardiac functional recovery and YAP1 activation in neonatal mice after MI. In vitro either inhibition of glycolysis by 2-DG or inhibition of YAP1 activation prevents Poly (I:C) induced YAP1 activation and neonatal cardiomyocyte proliferation. Importantly, YAP1 activation increases miR-152 expression, leading to cardiomyocyte proliferation through suppression P27kip1 and DNMT1 expression. We conclude that microRNAs play an important role in TLR modulation induced protection against myocardial I/R injury by increasing the activation of PI3K/Akt signaling pathway, decreasing TLR/NF-kB mediated inflammatory response, and suppressing activation of apoptotic signaling following myocardial I/R injury. In addition, TLR3 is an essential for neonatal heart repair and regeneration after myocardial infarction. TLR3 modulation could be a novel strategy for heart regeneration and repair.
17

Novel Therapeutic Approaches for Ischemic Heart and Brain Injury: Modulation of Toll-Like Receptor-Mediated Signaling Pathways and PI3K/Akt Signaling

Lu, Chen 01 May 2014 (has links)
Innate immune and inflammatory responses contribute to myocardial and cerebral ischemia/reperfusion (I/R) injury. Toll-like receptors (TLRs) play a critical role in the induction of innate immune and inflammatory responses via activation of nuclear factor kappa B (NF-κB). We have shown that activation of NF-κB contributes to myocardial and cerebral I/R injury. Indeed, inhibition of TLR4-mediated NF-κB activation significantly decreased myocardial and cerebral I/R injury via activation of PI3K/Akt signaling. PI3K/Akt signaling is an important pathway in regulating cellular survival and inflammatory responses. Therefore, an important question is how to differentially modulate PI3K/Akt signaling and TLR/NF-κB-mediated signaling pathway during I/R injury? We demonstrated that pretreatment of mice with Pam3CSK4, a specific TLR2 ligand, significantly decreased cerebral I/R injury and improved neuronal functional recovery. Importantly, therapeutic administration of Pam3CSK4 also markedly decreased cerebral I/R injury. The mechanisms involved suppression of NF-κB binding activity and activation of PI3K/Akt signaling. We also demonstrated that CpG-ODN, a specific TLR9 ligand, induced protection against cerebral I/R injury via activation of PI3K/Akt signaling. Our findings were consistent with our previous reports showing that administration of Pam3CSK4 or CpG-ODN protected against myocardial I/R injury via a PI3K/Akt-dependent mechanism. In addition, we demonstrated for the first time that TLR3 located in endosomes played a deleterious role in myocardial I/R injury via activation of NF-κB. To investigate how to activate PI3K/Akt signaling during I/R injury, we examined the role of microRNA (miRs) in regulating PI3K/Akt signaling during myocardial ischemic injury. We discovered that Pam3CSK4 or CpG-ODN treatment significantly increased the expression of miR-130a in the myocardium, while myocardial infarction markedly decreased the levels of miR-130a in the myocardium. The data indicated that miR-130a served a protective role in myocardial ischemic injury. Indeed, we demonstrated for the first time that increased expression of miR-130a significantly attenuated cardiac dysfunction and promoted angiogenesis after myocardial infarction. The mechanisms involved activation of PI3K/Akt signaling via targeting PTEN expression by microRNA-130a. This dissertation discovers novel mechanisms of cerebral and myocardial ischemic injury and provides solid basis for developing new approaches for the treatment and management of stroke and heart attack patients.
18

The Effect of Glucagon-like Peptide-2 on Insulin-like Growth Factor-1 in Murine Intestinal Subepithelial Myofibroblasts

Leen, Jason 15 February 2010 (has links)
Insulin-like growth factor-1 (IGF-1), a known secretory product of intestinal subepithelial myofibroblasts (ISEMF), is essential for the intestinotrophic effects of glucagon-like peptide-2(GLP-2). I hypothesized that GLP-2 increases the production of IGF-1 by primary murine ISEMF in culture. Immunocytochemistry showed that the ISEMF stained appropriately for α smooth muscle actin and vimentin but not for desmin. The ISEMF also expressed GLP-2 receptor and IGF-1 mRNA transcripts. ISEMF treated with GLP-2 revealed a maximal increase in IGF-1 mRNA transcript levels at 10-8 M GLP-2 and 2hr. Interestingly, immunoblotting revealed an increase in P-AKT/T-AKT with GLP-2, but no changes in cAMP, P-ERK/T-ERK or calcium were detected. PI3K inhibition and kinase-dead AKT over-expression abrogated GLP-2-induction of IGF-1 mRNA, and ISEMF from GLP-2R null mice demonstrated reductions in IGF-1 mRNA and cellular IGF-1, but not in media IGF-1, vs. wild-type ISEMF. These findings suggest a possible mechanism by which GLP-2 increases intestinal growth in-vivo.
19

The Effect of Glucagon-like Peptide-2 on Insulin-like Growth Factor-1 in Murine Intestinal Subepithelial Myofibroblasts

Leen, Jason 15 February 2010 (has links)
Insulin-like growth factor-1 (IGF-1), a known secretory product of intestinal subepithelial myofibroblasts (ISEMF), is essential for the intestinotrophic effects of glucagon-like peptide-2(GLP-2). I hypothesized that GLP-2 increases the production of IGF-1 by primary murine ISEMF in culture. Immunocytochemistry showed that the ISEMF stained appropriately for α smooth muscle actin and vimentin but not for desmin. The ISEMF also expressed GLP-2 receptor and IGF-1 mRNA transcripts. ISEMF treated with GLP-2 revealed a maximal increase in IGF-1 mRNA transcript levels at 10-8 M GLP-2 and 2hr. Interestingly, immunoblotting revealed an increase in P-AKT/T-AKT with GLP-2, but no changes in cAMP, P-ERK/T-ERK or calcium were detected. PI3K inhibition and kinase-dead AKT over-expression abrogated GLP-2-induction of IGF-1 mRNA, and ISEMF from GLP-2R null mice demonstrated reductions in IGF-1 mRNA and cellular IGF-1, but not in media IGF-1, vs. wild-type ISEMF. These findings suggest a possible mechanism by which GLP-2 increases intestinal growth in-vivo.
20

Type 2 Diabetes Mellitus Acts as a Risk Factor for the Development of Early Stage Alzheimer’s Disease / Le Diabète Mellitus de Type 2 agit comme un facteur de risque dans le développement de stades précoces de la maladie d’Alzheimer

Su, Men 06 June 2017 (has links)
Après le vieillissement, le diabète Mellitus de type 2 (DMT2) est le facteur de risque le plus important pour développer la maladie d'Alzheimer (MA). Le DMT2 est une maladie métabolique caractérisée par une hyperglycémie et une résistance à l’insuline qui se développe vers la cinquantaine et est fortement favorisée par l’obésité. Nous avons exploré l’impact potentiel du DMT2 sur le développement de la MA chez le Rat. Pour cela, nous avons utilisé un régime alimentaire cafétéria (RC) couplé à des injections de faibles doses de Streptozotocine (STZ) (STZ-CD). Les rats STZ-CD montrent des signes classiques de DMT2 et des déficits légers de consolidation en mémoire de reconnaissance spatiale. Afin d'imiter le développement des stades précoces de la MA, la moitié des rats reçoivent une infusion intracérébrale de peptides β-amyloïdes solubles (Aβ) qui ne conduisent pas à des déficits mnésiques durables. Par contre, le phénotype DMT2 chez les rats STZ-CD exacerbe les déficits mnésiques observés avec le peptide Aβ en les prolongeant dans le temps. L’enrichissement environnemental pendant une période critique de 2 semaines après l’infusion d’Aβ est capable de compenser les déficits mnésiques induits par le peptide Aβ et/ou le traitement STZ-CD ; mais d’une manière limitée dans le temps. Des analyses biochimiques dans l’aire CA1 de l’hippocampe ont été effectuées pour explorer de possibles altérations de la voie PI3K, de marqueurs de la cascade amyloïde et du DMT2. Le peptide Aβ seul induit peu de changements durables ; le phénotype DMT2 seul est associé à des changements pour quelques protéines-clé, largement en liaison avec le régime cafétéria. Par contre, la majorité des modifications dysfonctionnelles de protéines est observée chez les rats montrant un phénotype de type DMT2 et recevant le peptide Aβ. Ces altérations, similaires à celles rapportées chez des patients atteints de la MA et chez des modèles animaux de la MA, concernent notamment des protéines de la voie PI3K-Akt impliquée dans des fonctions comme l’autophagie et l’inflammation et des marqueurs de la MA. L’altération de ces protéines pourrait contribuer aux déficits mnésiques durables observés et mettre en lumière des mécanismes moléculaires induits par le DMT2 et promouvant un milieu neuronal favorisant le développement d’un stade précoce de la maladie d'Alzheimer. / Following aging, type 2 Diabetes Mellitus (T2DM) is the most important risk factor of developing Alzheimer’s disease (AD). It is a metabolic disorder characterised by hyperglycemia and insulin resistance that develops in middle age and is promoted largely by obesity. In this study, we used a T2DM rat model to assess the potential impact T2DM may have on the development of AD. Rats were fed cafeteria-style diet (CD) coupled with low dose injections of Streptozotocin (STZ)(STZ-CD). We found that STZ-CD treated rats showed classic signs of T2DM and a modest deficit in consolidation of spatial recognition memory. In order to mimic the development of early stage AD, half of the rats were infused with a soluble oligomeric amyloid beta (Aβ), which alone was not sufficient to induce long-lasting memory deficits. Interestingly, the T2DM phenotype exacerbated the memory deficits induced by Aβ infusion by prolonging these deficits. Environmental enrichment during a critical two-week period following infusion of Aβ rescued memory deficits induced by Aβ and/or STZ-CD treatment; however, this was time-limited. Biochemical analyses were conducted mainly in proteins involved in the PI3K-Akt signalling pathway and markers of AD and T2DM in CA1 of the hippocampus. Aβ alone induced few long-lasting changes; T2DM phenotype alone induced some changes that were largely mediated by CD treatment alone; however, the majority of dysfunctional regulation of proteins was observed in rats showing a T2DM phenotype that were infused with Aβ. More importantly, many of these changes are similar to those reported in brains of AD patients or rodent models of the disease; notably key proteins in the PI3K-Akt signaling pathway that mediate functions such as autophagy, inflammation and markers of AD. Dysregulation of these proteins may contribute to the long-lasting memory deficits seen in this model, which may provide evidence of molecular mechanisms induced by T2DM that could promote a dysfunctional neuronal environment favouring the development of early stages of Alzheimer’s disease.

Page generated in 0.1241 seconds